Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Insect Physiol ; 57(7): 872-80, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21453707

ABSTRACT

Gustatory feedback allows animals to distinguish between edible and noxious food and adapts centrally generated feeding motor patterns to environmental demands. In reduced preparations obtained from starved Calliphora larvae, putatively appetitive (ethanol), aversive (sodium acetate) and neutral (glucose) gustatory stimuli were applied to the anterior sense organs. The resulting sensory response was recorded from the maxillary and antennal nerves. All three stimuli increased the neural activity in both nerves. Recordings obtained from the antennal nerve to monitor the activation pattern of the cibarial dilator muscles, demonstrated an effect of gustatory input on the central pattern generator for feeding. Ethanol consistently enhanced the rhythmic activity of the CDM motor neurons either by speeding up the rhythm or by increasing the burst duration. Ethanol also had an enhancing effect on the motor patterns of a protractor muscle which moves the cephalopharyngeal skeleton relative to the body. Sodium acetate showed a state dependent effect: in preparations without spontaneous CDM activity it initiated rhythmic motor patterns, while an ongoing CDM rhythm was inhibited. Surprisingly glucose had an enhancing effect which was less pronounced than that of ethanol. Gustatory feedback therefore can modify and adapt the motor output of the multifunctional central pattern generator for feeding.


Subject(s)
Diptera/physiology , Feedback, Sensory , Motor Activity , Animals , Ethanol , Feeding Behavior , Food Deprivation , Glucose , Larva/physiology , Nervous System , Sensilla/physiology , Sodium Acetate , Taste Perception
2.
J Morphol ; 271(8): 960-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20623655

ABSTRACT

An anatomical description is given by the muscles in the pro- and mesothorax, and those associated with the feeding apparatus (cephalopharyngeal skeleton, CPS) that participate in feeding behavior in third instar Calliphora larvae. The body wall muscles in the pro- and mesothoracic segments are organized in three layers: internal, intermedial, and external. The muscles were labeled with roman numerals according to the nomenclature in use for the abdominal segments. Muscles associated with the CPS are labeled according to their function. The prothorax bears five pairs of lateral symmetrically longitudinal segmental body wall muscles and lacks the transversal muscle group present in the mesothorax and abdominal segments. Additionally, four pairs of intersegmental muscles project from the prothorax to the second, fourth, and fifth segment. The mesothorax bears 15 pairs of segmental longitudinal and 18 pairs of transversal muscles. The accessory pharyngeal muscles span the CPS and the cuticle. Three pairs of protractors and retractors and two pairs of mouth hook accessors (MH(AC)) exist, which move the CPS relative to the body. The pharyngeal muscles are exclusively attached to the structures of the CPS. The mouth hook elevators and depressors, which mediate the hooks rotation are attached to the ventral arm of the CPS and project to a dorsal (elevators) or ventral (depressors) protuberance of the mouth hooks. The cibarial dilator muscles (CDM) span the dorsal arms of the CPS and the dorsal surface of the esophagus and mediate food ingestion. The labial retractors (LRs) lack antagonists and project from the ventral surface of the CPS to the unpaired labium. Contractions of these muscles open the mouth cavity.


Subject(s)
Diptera/anatomy & histology , Animals , Diptera/physiology , Feeding Behavior , Larva/anatomy & histology , Larva/physiology , Mouth/anatomy & histology , Muscles/anatomy & histology , Muscles/innervation
3.
J Morphol ; 271(8): 969-79, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20623656

ABSTRACT

We describe the anatomy of the nerves that project from the central nervous system (CNS) to the pro- and mesothoracic segments and the cephalopharyngeal skeleton (CPS) for third instar Calliphora larvae. Due to the complex branching pattern we introduce a nomenclature that labels side branches of first and second order. Two fine nerves that were not yet described are briefly introduced. One paired nerve projects to the ventral arms (VAs) of the CPS. The second, an unpaired nerve, projects to the ventral surface of the cibarial part of the esophagus (ES). Both nerves were tentatively labeled after the structures they innervate. The antennal nerve (AN) innervates the olfactory dorsal organ (DO). It contains motor pathways that project through the frontal connectives (FC) to the frontal nerve (FN) and innervate the cibarial dilator muscles (CDM) which mediate food ingestion. The maxillary nerve (MN) innervates the sensory terminal organ (TO), ventral organ (VO), and labial organ (LO) and comprises the motor pathways to the mouth hook (MH) elevator, MH depressor, and the labial retractor (LR) which opens the mouth cavity. An anastomosis of unknown function exists between the AN and MN. The prothoracic accessory nerve (PaN) innervates a dorsal protractor muscle of the CPS and sends side branches to the aorta and the bolwig organ (BO) (stemmata). In its further course, this nerve merges with the prothoracic nerve (PN). The architecture of the PN is extremely complex. It innervates a set of accessory pharyngeal muscles attached to the CPS and the body wall musculature of the prothorax. Several anastomoses exist between side branches of this nerve which were shown to contain motor pathways. The mesothoracic nerve (MeN) innervates a MH accessor and the longitudinal and transversal body wall muscles of the second segment.


Subject(s)
Diptera/anatomy & histology , Animals , Brain/anatomy & histology , Central Nervous System/anatomy & histology , Diptera/physiology , Efferent Pathways , Larva/anatomy & histology , Larva/physiology , Muscles/anatomy & histology , Muscles/innervation
4.
J Insect Physiol ; 56(7): 695-705, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20074578

ABSTRACT

To establish the existence of a central pattern generator for feeding in the larval central nervous system of two Drosophila species, the gross anatomy of feeding related muscles and their innervation is described, the motor units of the muscles identified and rhythmic motor output recorded from the isolated CNS. The cibarial dilator muscles that mediate food ingestion are innervated by the frontal nerve. Their motor pathway projects from the brain through the antennal nerves, the frontal connectives and the frontal nerve junction. The mouth hook elevator and depressor system is innervated by side branches of the maxillary nerve. The motor units of the two muscle groups differ in amplitude: the elevator is always activated by a small unit, the depressor by a large one. The dorsal protractors span the cephalopharyngeal skeleton and the body wall hence mediating an extension of the CPS. These muscles are innervated by the prothoracic accessory nerve. Rhythmic motor output produced by the isolated central nervous system can simultaneously be recorded from all three nerves. The temporal pattern of the identified motor units resembles the sequence of muscle contractions deduced from natural feeding behavior and is therefore considered as fictive feeding. Phase diagrams show an almost identical fictive feeding pattern is in both species.


Subject(s)
Brain/physiology , Drosophila/growth & development , Drosophila/physiology , Animals , Central Nervous System/physiology , Eating , Feeding Behavior , Larva/growth & development , Larva/physiology , Muscles/physiology
5.
J Undergrad Neurosci Educ ; 9(1): A20-35, 2010.
Article in English | MEDLINE | ID: mdl-23494516

ABSTRACT

Introductory neurobiology courses face the problem that practical exercises often require expensive equipment, dissections, and a favorable student-instructor ratio. Furthermore, the duration of an experiment might exceed available time or the level of required expertise is too high to successfully complete the experiment. As a result, neurobiological experiments are commonly replaced by models and simulations, or provide only very basic experiments, such as the frog sciatic nerve preparation, which are often time consuming and tedious. Action potential recordings in giant fibers of intact earthworms (Lumbricus terrestris) circumvent many of these problems and result in a nearly 100% success rate. Originally, these experiments were introduced as classroom exercises by Charles Drewes in 1978 using awake, moving earthworms. In 1990, Hans-Georg Heinzel described further experiments using anesthetized earthworms. In this article, we focus on the application of these experiments as teaching tools for basic neurobiology courses. We describe and extend selected experiments, focusing on specific neurobiological principles with experimental protocols optimized for classroom application. Furthermore, we discuss our experience using these experiments in animal physiology and various neurobiology courses at the University of Bonn.

6.
J Morphol ; 269(3): 272-82, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17960761

ABSTRACT

The stomatogastric nervous system (SNS) associated with the foregut was studied in 3rd instar larvae of Drosophila melanogaster and Calliphora vicina (blowfly). In both species, the foregut comprises pharynx, esophagus, and proventriculus. Only in Calliphora does the esophagus form a crop. The position of nerves and neurons was investigated with neuronal tracers in both species and GFP expression in Drosophila. The SNS is nearly identical in both species. Neurons are located in the proventricular and the hypocerebral ganglion (HCG), which are connected to each other by the proventricular nerve. Motor neurons for pharyngeal muscles are located in the brain not, as in other insect groups, in the frontal ganglion. The position of the frontal ganglion is taken by a nerve junction devoid of neurons. The junction is composed of four nerves: the frontal connectives that fuse with the antennal nerves (ANs), the frontal nerve innervating the cibarial dilator muscles and the recurrent nerve that innervates the esophagus and projects to the HCG. Differences in the SNS are restricted to a crop nerve only present in Calliphora and an esophageal ganglion that only exists in Drosophila. The ganglia of the dorsal organs give rise to the ANs, which project to the brain. The extensive conformity of the SNS of both species suggests functional parallels. Future electrophysiological studies of the motor circuits in the SNS of Drosophila will profit from parallel studies of the homologous but more accessible structures in Calliphora.


Subject(s)
Diptera/anatomy & histology , Drosophila melanogaster/anatomy & histology , Ganglia, Invertebrate/anatomy & histology , Neurons/cytology , Animals , Digestive System/cytology , Digestive System/innervation , Diptera/cytology , Drosophila melanogaster/cytology , Ganglia, Invertebrate/cytology , Larva/anatomy & histology , Larva/cytology , Nervous System/anatomy & histology , Nervous System/cytology
7.
Article in English | MEDLINE | ID: mdl-17713768

ABSTRACT

On the pectines of scorpions, several types of cuticular receptors are located. Of these receptors, only the chemo- and mechanosensory peg sensilla have been studied so far while the response characteristics of the long, straight hair sensilla are unknown. As these sensilla protrude in the walking direction and to the ground, we assume that these receptors are most likely involved in observed reflex behaviours. The sensilla constitute rather robust shafts, comparable to other touch-receptors. Their innervation pattern reveals that 5-6 sensory cells are associated with one sensillum. It was possible to record up to three different spike classes (units) which could be distinguished by size, response characteristics and conduction velocity. Two units were analysed in more detail. The response characteristics showed two phasic units, one large and one small, coding the velocity of a stimulus. One medium-sized unit showed phasic-tonic characteristics, coding also the duration of a stimulus. Taking together the morphological and electrophysiological results, we suggest that these sensilla belong to the group of long hair sensilla distributed all over the scorpion body. Furthermore, their response characteristics and the timing between sensory and motor activity within the pectine nerve enable them to be involved in reflex behaviours.


Subject(s)
Mechanoreceptors/anatomy & histology , Mechanoreceptors/physiology , Mechanotransduction, Cellular/physiology , Scorpions/anatomy & histology , Scorpions/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL