Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Mol Biol Educ ; 46(4): 403-409, 2018 07.
Article in English | MEDLINE | ID: mdl-29984554

ABSTRACT

Protein ORIGAMI (http://ibg.kit.edu/protein_origami) is a browser-based web application that allows the user to create straightforward 3D paper models of folded peptides for research, teaching and presentations. An amino acid sequence can be turned into α-helices, ß-strands and random coils that can be printed out and folded into properly scaled models, with a color code denoting the biophysical characteristics of each amino acid residue (hydrophobicity, charge, etc.). These models provide an intuitive visual and tactile understanding of peptide interactions with other partners, such as helix-helix assembly, oligomerization, membrane binding, or pore formation. Helices can also be displayed as a helical wheel or helical mesh in 2D graphics, to be used in publications or presentations. The highly versatile programme Protein ORIGAMI is also suited to create less conventional helices with arbitrary pitch (e.g., 310 -helix, π-helix, or left-handed helices). Noncanonical amino acids, labels and different terminal modifications can be defined and displayed at will, and different protonation states can be shown. In addition to the web application, the program source code can be downloaded and installed locally on a PC. The printed paper models can be readily used for daily research and discussions, just as for educational purposes and teaching. © 2018 by The International Union of Biochemistry and Molecular Biology, 46:403-409, 2018.


Subject(s)
Models, Molecular , Paper , Peptides/chemistry , Protein Folding , Software , Teaching , Comprehension , Humans , Learning
2.
Cell ; 152(1-2): 316-26, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23332763

ABSTRACT

We propose a concept for the folding and self-assembly of the pore-forming TatA complex from the Twin-arginine translocase and of other membrane proteins based on electrostatic "charge zippers." Each subunit of TatA consists of a transmembrane segment, an amphiphilic helix (APH), and a C-terminal densely charged region (DCR). The sequence of charges in the DCR is complementary to the charge pattern on the APH, suggesting that the protein can be "zipped up" by a ladder of seven salt bridges. The length of the resulting hairpin matches the lipid bilayer thickness, hence a transmembrane pore could self-assemble via intra- and intermolecular salt bridges. The steric feasibility was rationalized by molecular dynamics simulations, and experimental evidence was obtained by monitoring the monomer-oligomer equilibrium of specific charge mutants. Similar "charge zippers" are proposed for other membrane-associated proteins, e.g., the biofilm-inducing peptide TisB, the human antimicrobial peptide dermcidin, and the pestiviral E(RNS) protein.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Amino Acid Sequence , Bacillus subtilis/metabolism , Bacterial Toxins/chemistry , Escherichia coli Proteins/genetics , Humans , Membrane Transport Proteins/genetics , Molecular Dynamics Simulation , Molecular Sequence Data , Mutagenesis, Site-Directed , Peptides/chemistry , Peptides/metabolism , Protein Folding , Sequence Alignment , Viral Proteins/chemistry , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...