Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Sel Evol ; 56(1): 27, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589805

ABSTRACT

BACKGROUND: Claw diseases and mastitis represent the most important health issues in dairy cattle with a frequently mentioned connection to milk production. Although many studies have aimed at investigating this connection in more detail by estimating genetic correlations, they do not provide information about causality. An alternative is to carry out Mendelian randomization (MR) studies using genetic variants to investigate the effect of an exposure on an outcome trait mediated by genetic variants. No study has yet investigated the causal association of milk yield (MY) with health traits in dairy cattle. Hence, we performed a MR analysis of MY and seven health traits using imputed whole-genome sequence data from 34,497 German Holstein cows. We applied a method that uses summary statistics and removes horizontal pleiotropic variants (having an effect on both traits), which improves the power and unbiasedness of MR studies. In addition, genetic correlations between MY and each health trait were estimated to compare them with the estimates of causal effects that we expected. RESULTS: All genetic correlations between MY and each health trait were negative, ranging from - 0.303 (mastitis) to - 0.019 (digital dermatitis), which indicates a reduced health status as MY increases. The only non-significant correlation was between MY and digital dermatitis. In addition, each causal association was negative, ranging from - 0.131 (mastitis) to - 0.034 (laminitis), but the number of significant associations was reduced to five nominal and two experiment-wide significant results. The latter were between MY and mastitis and between MY and digital phlegmon. Horizontal pleiotropic variants were identified for mastitis, digital dermatitis and digital phlegmon. They were located within or nearby variants that were previously reported to have a horizontal pleiotropic effect, e.g., on milk production and somatic cell count. CONCLUSIONS: Our results confirm the known negative genetic connection between health traits and MY in dairy cattle. In addition, they provide new information about causality, which for example points to the negative energy balance mediating the connection between these traits. This knowledge helps to better understand whether the negative genetic correlation is based on pleiotropy, linkage between causal variants for both trait complexes, or indeed on a causal association.


Subject(s)
Digital Dermatitis , Mastitis , Animals , Cattle/genetics , Female , Cellulitis , Lactation/genetics , Mendelian Randomization Analysis , Milk
2.
BMC Genomics ; 25(1): 265, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461236

ABSTRACT

BACKGROUND: Over the last decades, it was subject of many studies to investigate the genomic connection of milk production and health traits in dairy cattle. Thereby, incorporating functional information in genomic analyses has been shown to improve the understanding of biological and molecular mechanisms shaping complex traits and the accuracies of genomic prediction, especially in small populations and across-breed settings. Still, little is known about the contribution of different functional and evolutionary genome partitioning subsets to milk production and dairy health. Thus, we performed a uni- and a bivariate analysis of milk yield (MY) and eight health traits using a set of ~34,497 German Holstein cows with 50K chip genotypes and ~17 million imputed sequence variants divided into 27 subsets depending on their functional and evolutionary annotation. In the bivariate analysis, eight trait-combinations were observed that contrasted MY with each health trait. Two genomic relationship matrices (GRM) were included, one consisting of the 50K chip variants and one consisting of each set of subset variants, to obtain subset heritabilities and genetic correlations. In addition, 50K chip heritabilities and genetic correlations were estimated applying merely the 50K GRM. RESULTS: In general, 50K chip heritabilities were larger than the subset heritabilities. The largest heritabilities were found for MY, which was 0.4358 for the 50K and 0.2757 for the subset heritabilities. Whereas all 50K genetic correlations were negative, subset genetic correlations were both, positive and negative (ranging from -0.9324 between MY and mastitis to 0.6662 between MY and digital dermatitis). The subsets containing variants which were annotated as noncoding related, splice sites, untranslated regions, metabolic quantitative trait loci, and young variants ranked highest in terms of their contribution to the traits` genetic variance. We were able to show that linkage disequilibrium between subset variants and adjacent variants did not cause these subsets` high effect. CONCLUSION: Our results confirm the connection of milk production and health traits in dairy cattle via the animals` metabolic state. In addition, they highlight the potential of including functional information in genomic analyses, which helps to dissect the extent and direction of the observed traits` connection in more detail.


Subject(s)
Milk , Polymorphism, Single Nucleotide , Animals , Female , Cattle/genetics , Phenotype , Genotype , Genomics/methods , Quantitative Trait Loci , Lactation/genetics
3.
Genet Sel Evol ; 55(1): 38, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291496

ABSTRACT

BACKGROUND: This paper highlights the relationships between economic weights, genetic progress, and phenotypic progress in genomic breeding programs that aim at generating genetic progress in complex, i.e., multi-trait, breeding objectives via a combination of estimated breeding values for different trait complexes. RESULTS: Based on classical selection index theory in combination with quantitative genetic models, we provide a methodological framework for calculating expected genetic and phenotypic progress for all components of a complex breeding objective. We further provide an approach to study the sensitivity of the system to modifications, e.g. to changes in the economic weights. We propose a novel approach to derive the covariance structure of the stochastic errors of estimated breeding values from the observed correlations of estimated breeding values. We define 'realized economic weights' as those weights that would coincide with the observed composition of the genetic trend and show, how they can be calculated. The suggested methodology is illustrated with an index that aims at achieving a breeding goal composed of six trait complexes, that was applied in German Holstein cattle breeding until 2021. CONCLUSIONS: Based on the presented results, the main conclusions are (i) the composition of the observed genetic progress matches the expectations well, with predictions being slightly better when the covariance of estimation errors is taken into account; (ii) the composition of the expected phenotypic trend deviates significantly from the expected genetic trend due to the differences in trait heritabilities; and (iii) the realized economic weights derived from the observed genetic trend deviate substantially from the predefined ones, in one case even with a reversed sign. Further results highlight the implications of the change to a modified breeding goal based on the example of a new index comprising eight, partly new, trait complexes, which is used since 2021 in the German Holstein breeding program. The proposed framework and the analytical tools and software provided will be useful to define more rational and generally accepted breeding objectives in the future.


Subject(s)
Genome , Selection, Genetic , Animals , Cattle/genetics , Phenotype , Genomics , Models, Genetic
4.
J Anim Breed Genet ; 140(4): 390-399, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36872841

ABSTRACT

Genomic analyses commonly explore the additive genetic variance of traits. The non-additive variance, however, is usually small but often significant in dairy cattle. This study aimed at dissecting the genetic variance of eight health traits that recently entered the total merit index in Germany and the somatic cell score (SCS), as well as four milk production traits by analysing additive and dominance variance components. The heritabilities were low for all health traits (between 0.033 for mastitis and 0.099 for SCS), and moderate for the milk production traits (between 0.261 for milk energy yield and 0.351 for milk yield). For all traits, the contribution of dominance variance to the phenotypic variance was low, varying between 0.018 for ovarian cysts and 0.078 for milk yield. Inbreeding depression, inferred from the SNP-based observed homozygosity, was significant only for the milk production traits. The contribution of dominance variance to the genetic variance was larger for the health traits, ranging from 0.233 for ovarian cysts to 0.551 for mastitis, encouraging further studies that aim at discovering QTLs based on their additive and dominance effects.


Subject(s)
Cattle Diseases , Ovarian Cysts , Female , Cattle/genetics , Animals , Milk , Lactation/genetics , Phenotype , Genomics , Quantitative Trait Loci , Analysis of Variance , Ovarian Cysts/genetics , Ovarian Cysts/veterinary , Cattle Diseases/genetics
6.
G3 (Bethesda) ; 9(4): 1117-1129, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30760541

ABSTRACT

Mixed models can be considered as a type of penalized regression and are everyday tools in statistical genetics. The standard mixed model for whole genome regression (WGR) is ridge regression best linear unbiased prediction (RRBLUP) which is based on an additive marker effect model. Many publications have extended the additive WGR approach by incorporating interactions between loci or between genes and environment. In this context of penalized regressions with interactions, it has been reported that translating the coding of single nucleotide polymorphisms -for instance from -1,0,1 to 0,1,2- has an impact on the prediction of genetic values and interaction effects. In this work, we identify the reason for the relevance of variable coding in the general context of penalized polynomial regression. We show that in many cases, predictions of the genetic values are not invariant to translations of the variable coding, with an exception when only the sizes of the coefficients of monomials of highest total degree are penalized. The invariance of RRBLUP can be considered as a special case of this setting, with a polynomial of total degree 1, penalizing additive effects (total degree 1) but not the fixed effect (total degree 0). The extended RRBLUP (eRRBLUP), which includes interactions, is not invariant to translations because it does not only penalize interactions (total degree 2), but also additive effects (total degree 1). This observation implies that translation-invariance can be maintained in a pair-wise epistatic WGR if only interaction effects are penalized, but not the additive effects. In this regard, approaches of pre-selecting loci may not only reduce computation time, but can also help to avoid the variable coding issue. To illustrate the practical relevance, we compare different regressions on a publicly available wheat data set. We show that for an eRRBLUP, the relevance of the marker coding for interaction effect estimates increases with the number of variables included in the model. A biological interpretation of estimated interaction effects may therefore become more difficult. Consequently, comparing reproducing kernel Hilbert space (RKHS) approaches to WGR approaches modeling effects explicitly, the supposed advantage of an increased interpretability of the latter may not be real. Our theoretical results are generally valid for penalized regressions, for instance also for the least absolute shrinkage and selection operator (LASSO). Moreover, they apply to any type of interaction modeled by products of predictor variables in a penalized regression approach or by Hadamard products of covariance matrices in a mixed model.


Subject(s)
Genomics/methods , Regression Analysis , Polymorphism, Single Nucleotide , Triticum/genetics , Triticum/growth & development
7.
J Dairy Sci ; 101(1): 425-432, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29128222

ABSTRACT

The aim of this study was to answer the question whether models for genetic evaluations of longevity should include a correction for age at first calving (AFC). For this purpose, phenotypic and genetic relationships between AFC, its component traits age at first insemination (AFI) and interval from first to last insemination (FLI), and survival of different periods of the first lactation (S1: 0 to 49 d, S2: 50 to 249 d, S3: 250 d to second calving) were investigated. Data of 721,919 German Holstein heifers, being inseminated for the first time during the years from 2003 to 2012, were used for the analyses. Phenotypic correlations of AFI, FLI, and AFC to S1 to S3 were negative. Mean estimated heritabilities were 0.239 (AFI), 0.007 (FLI), and 0.103 (AFC) and 0.023 (S1), 0.016 (S2), and 0.028 (S3) on the observed scale. The genetic correlation between AFI and FLI was close to zero. Genetic correlations between AFI and the survival traits were -0.08 (S1), -0.02 (S2), and -0.10 (S3); those between FLI and the survival traits were -0.14 (S1), -0.20 (S2), and -0.44 (S3); and those between AFC and the survival traits were -0.09 (S1), -0.06 (S2), and -0.20 (S3). Some of these genetic correlations were different from zero, which suggests that correcting for AFC in genetic evaluations for longevity in dairy cows might remove functional genetic variance and should be reconsidered.


Subject(s)
Cattle/physiology , Longevity/genetics , Models, Biological , Aging , Animals , Cattle/genetics , Female , Fertility , Genetic Variation , Lactation/physiology , Phenotype
8.
J Dairy Sci ; 99(2): 1253-1265, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26627862

ABSTRACT

Longevity of dairy cows is determined by culling. Previous studies have shown that culling of dairy cows is not an unambiguous trait but rather the result of several reasons including diseases and selection decisions. The relative importance of these reasons is not stable over time, implying that genetic background of culling may vary over lifetime. Data of 7.6 million German Holstein cows were used to assess the detailed genetic correlation structure among 18 survival traits defined for the first 3 parities. Differences of genetic factors which determine survival of different production periods were found, showing a pattern with 3 genetically distinct periods within each parity: early lactation (calving until d 59), mid lactation (d 60 to 299), and late lactation (d 300 until next calving). Survival in first and later parities were found to be slightly genetically different from each other. The identified patterns were in good accordance with distributions of reasons for disposal, and correlations of estimated breeding values of survival traits for different periods to production and functional traits were generally plausible compared with literature regarding effects on the risk of culling. The study shows that genetic background of survival is variable not only across but also within parities. The results of the study can help developing more accurate models for routine genetic evaluations of longevity that account for nonunity genetic correlations between survival of different periods.


Subject(s)
Cattle/genetics , Cattle/physiology , Longevity/genetics , Quantitative Trait, Heritable , Animals , Breeding , Female , Genetic Structures , Lactation/physiology , Parity/physiology , Phenotype , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...