Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 8(7)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37999189

ABSTRACT

Development of biocomposite scaffolds has gained tremendous attention due to their potential for tissue regeneration. However, most scaffolds often contain animal-derived collagen that may elicit an immunological response, necessitating the development of new biomaterials. Herein, we developed a new collagen-like peptide,(Pro-Ala-His)10 (PAH)10, and explored its ability to be utilized as a functional biomaterial by incorporating it with a newly synthesized peptide-based self-assembled gel. The gel was prepared by conjugating a pectin derivative, galataric acid, with a pro-angiogenic peptide (LHYQDLLQLQY) and further functionalized with a cortistatin-derived peptide, (Phe-Trp-Lys-Thr)4 (FWKT)4, and the bio-ionic liquid choline acetate. The self-assembly of (PAH)10 and its interactions with the galactarate-peptide conjugates were examined using replica exchange molecular dynamics (REMD) simulations. Results revealed the formation of a multi-layered scaffold, with enhanced stability at higher temperatures. We then synthesized the scaffold and examined its physicochemical properties and its ability to integrate with aortic smooth muscle cells. The scaffold was further utilized as a bioink for bioprinting to form three-dimensional cell-scaffold matrices. Furthermore, the formation of actin filaments and elongated cell morphology was observed. These results indicate that the (PAH)10 hybrid scaffold provides a suitable environment for cell adhesion, proliferation and growth, making it a potentially valuable biomaterial for tissue engineering.

2.
Mol Divers ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36847923

ABSTRACT

Recent studies have shown that Ephrin receptors may be upregulated in several types of cancers including breast, ovarian and endometrial cancers, making them a target for drug design. In this work, we have utilized a target-hopping approach to design new natural product-peptide conjugates and examined their interactions with the kinase-binding domain of EphB4 and EphB2 receptors. The peptide sequences were generated through point mutations of the known EphB4 antagonist peptide TNYLFSPNGPIA. Their anticancer properties and secondary structures were analyzed computationally. Conjugates of most optimum of peptides were then designed by binding the N-terminal of the peptides with the free carboxyl group of the polyphenols sinapate, gallate and coumarate, which are known for their inherent anticancer properties. To investigate if these conjugates have a potential to bind to the kinase domain, we carried out docking studies and MMGBSA free energy calculations of the trajectories based on the molecular dynamics simulations, with both the apo and the ATP bound kinase domains of both receptors. In most cases binding interactions occurred within the catalytic loop region, while in some cases the conjugates were found to spread out across the N-lobe and the DFG motif region. The conjugates were further tested for prediction of pharmacokinetic properties using ADME studies. Our results indicated that the conjugates were lipophilic and MDCK permeable with no CYP interactions. These findings provide an insight into the molecular interactions of these peptides and conjugates with the kinase domain of the EphB4 and EphB2 receptor. As a proof of concept, we synthesized and carried out SPR analysis with two of the conjugates (gallate-TNYLFSPNGPIA and sinapate-TNYLFSPNGPIA). Results indicated that the conjugates showed higher binding with the EphB4 receptor and minimal binding to EphB2 receptor. Sinapate-TNYLFSPNGPIA showed inhibitory activity against EphB4. These studies reveal that some of the conjugates may be developed for further investigation into in vitro and in vivo studies and potential development as therapeutics.

3.
J Mol Model ; 29(1): 19, 2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36565373

ABSTRACT

Short peptide sequences and bolaamphiphiles derived from natural proteins are gaining importance due to their ability to form unique nanoscale architectures for a variety of biological applications. In this work, we have designed six short peptides (triplet or monomeric forms) and two peptide bolaamphiphiles that either incorporate the bioactive collagen motif (Gly-X-Y) or sequences where Gly, Pro, or hydroxyproline (Hyp) are replaced by Ala or His. For the bolaamphiphiles, a malate moiety was used as the aliphatic linker for connecting His with Hyp to create collagen mimics. Stability of the assemblies was assessed through molecular dynamics simulations and results indicated that (Pro-Ala-His)3 and (Ala-His-Hyp)3 formed the most stable structures, while the amphiphiles and the monomers showed some disintegration over the course of the 200 ns simulation, though most regained structural integrity and formed fibrillar structures, and micelles by the end of the simulation, likely due to the formation of more thermodynamically stable conformations. Multiple replica simulations (REMD) were also conducted where the sequences were simulated at different temperatures. Our results showed excellent convergence in most cases compared to constant temperature molecular dynamics simulation. Furthermore, molecular docking and MD simulations of the sequences bound to collagen triple helix structure revealed that several of the sequences had a high binding affinity and formed stable complexes, particularly (Pro-Ala-His)3 and (Ala-His-Hyp)3. Thus, we have designed new hybrid-peptide-based sequences which may be developed for potential applications as biomaterials for tissue engineering or drug delivery.


Subject(s)
Molecular Dynamics Simulation , Peptides , Molecular Docking Simulation , Peptides/chemistry , Amino Acid Sequence , Collagen/chemistry , Protein Conformation
4.
ACS Omega ; 6(48): 32460-32474, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34901596

ABSTRACT

Bio-organic amphiphiles have been shown to effectively impart unique physicochemical properties to ionic liquids resulting in the formation of versatile hybrid composites. In this work, we utilized computational methods to probe the formation and properties of hybrids prepared by mixing three newly designed bio-organic amphiphiles with 14 ionic liquids containing cholinium or glycine betaine cations and a variety of anions. The three amphiphiles were designed such that they contain unique biological moieties found in nature by conjugating (a) malic acid with the amino acid glutamine, (b) thiomalic acid with the antiviral, antibacterial pyrazole compound [3-(3,5-dimethyl-1H-pyrazol-1-yl)benzyl]amine, and (c) Fmoc-protected valine with diphenyl amine. Conductor-like screening model for real solvents (COSMO-RS) was used to obtain sigma profiles of the hybrid mixtures and to predict viscosities and mixing enthalpies of each composite. These results were used to determine optimal ionic liquid-bio-organic amphiphile mixtures. Molecular dynamics simulations of three optimal hybrids were then performed, and the interactions involved in the formation of the hybrids were analyzed. Our results indicated that cholinium-based ILs interacted most favorably with the amphiphiles through a variety of inter- and intramolecular interactions. This work serves to illustrate important factors that influence the interactions between bio-organic amphiphiles and bio-ILs and aids in the development of novel ionic liquid-based composites for a wide variety of potential biological applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...