Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
Eur J Biochem ; 222(2): 293-303, 1994 Jun 01.
Article in English | MEDLINE | ID: mdl-8020468

ABSTRACT

The nitric oxide reductase (NOR) from Pseudomonas stutzeri is a cytochrome bc complex which shows on SDS/PAGE two subunits with apparent molecular masses of 17 kDa and 38 kDa. Two other species of approximately 45 kDa and 74-78 kDa represent the undissociated enzyme complex and an aggregate of the cytochrome b subunit, respectively. The cytochrome b subunit is highly hydrophobic and results in aberrant electrophoretic mobility. The stability of the enzyme in various detergents and at different pH was investigated. The highest specific activity of 60 mumol NO min-1 mg-1 protein was obtained after electrophoresis in the presence of laurylpropanediol-3-phosphorylcholine ether. Purified NOR contained cardiolipin, phosphatidylglycerol, and phosphatidylethanolamine, the latter as the major component. A phospholipid was required for high catalytic activity with either cardiolipin or phosphatidylglycerol increasing the activity of the enzyme as isolated by a factor of up to 5. Free fatty acids inhibited NOR, with cis-9-octadecenoic acid (oleic acid) showing the most pronounced effect. Certain detergents substituted for the phospholipid requirement of NOR. The enzyme, as isolated, in 0.1% Triton X-100, 20 mM Tris/HCl pH 8.5, exhibited a complex set of EPR resonances at low magnetic field, with a prominent peak at g 6.34 resulting from Fe(III) high-spin cytochrome b. The second prominent feature arose from a low-spin Fe(III) heme center with strong lines at apparent g values of 3.02 and 2.29, and a broad resonance at g approximately 1.5 which we assigned to the cytochrome c component of the enzyme. From spin quantitation and computer simulations of the various EPR signals a ratio close to 1:1 for the low-spin/high-spin heme centers in NOR was estimated. Shifting the pH from 8.5 to 5.0, replacing Triton X-100 by other detergents, or adding soybean phospholipids to the protein, led to pronounced changes of the EPR signals in the g = 6 region. In contrast, the strong inhibitor oleic acid did not cause significant spectral changes. NOR which had been reduced by L-ascorbate/phenazine methosulfate prior to incubation with its substrate NO gave the characteristic Fe(II) nitrosyl triplet centered at g approximately 2.01, with a hyperfine splitting of 1.70 mT. In the absence of dioxygen, NOR was quantitatively reduced by either sodium dithionite, or photochemically with deazaflavin and oxalate; the enzyme was reoxidizable by ferricyanide in a fully reversible reaction. Spectroelectrochemical oxidoreductive titrations gave E'o (versus standard hydrogen electrode) = +322 mV for the cytochrome b and +280 mV for the cytochrome c component.


Subject(s)
Oxidoreductases/metabolism , Phospholipids/pharmacology , Pseudomonas/enzymology , Chromatography, Gel , Chromatography, Ion Exchange , Detergents/pharmacology , Electron Spin Resonance Spectroscopy/methods , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Kinetics , Macromolecular Substances , Molecular Weight , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/isolation & purification , Potentiometry , Spectrophotometry
2.
J Bacteriol ; 171(6): 3288-97, 1989 Jun.
Article in English | MEDLINE | ID: mdl-2542222

ABSTRACT

Nitric oxide (NO) reductase was solubilized by Triton X-100 from the membrane fraction of Pseudomonas stutzeri ZoBell and purified 100-fold to apparent electrophoretic homogeneity. The enzyme consisted of two polypeptides of Mr 38,000 and 17,000 associated with heme b and heme c, respectively. Absorption maxima of the reduced complex were at 420.5, 522.5, and 552.5 nm, with a shoulder at 560 nm. The electron paramagnetic resonance spectrum was characteristic of high- and low-spin ferric heme proteins; no signals typical for iron-sulfur proteins were found. Nitric oxide reductase stoichiometrically transformed NO to nitrous oxide in an ascorbate-phenazine methosulfate-dependent reaction with a specific activity of 11.8 mumols/min per mg of protein. The activity increased to 40 mumols upon the addition of soybean phospholipids, n-octyl-beta-D-glucopyranoside, or its thio derivative to the assay system. Apparent Km values for NO and phenazine methosulfate were 60 and 2 microM, respectively. The pH optimum of the reaction was at 4.8. Cytochrome co was purified from P. stutzeri to permit its distinction from NO reductase. Spectrophotometric binding assays and other criteria also differentiated NO reductase from the respiratory cytochrome bc1 complex.


Subject(s)
Cytochrome b Group/metabolism , Cytochrome c Group/metabolism , Nitric Oxide/metabolism , Pseudomonas/metabolism , Catalysis , Cell Membrane/enzymology , Detergents/pharmacology , Heme/analysis , Iron/analysis , Lipids/pharmacology , Molecular Weight , Oxidation-Reduction , Oxidoreductases/isolation & purification , Oxidoreductases/metabolism , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL