Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell Fact ; 15: 50, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26966093

ABSTRACT

BACKGROUND: Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. RESULTS: Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl ß-D-thiogalactopyranoside) and IPTG (isopropyl ß-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a constitutive promoter). CONCLUSIONS: We evaluated different inducible promoters, as well as an orthologous expression system, for controlled gene expression in L. plantarum. Furthermore, here we provide proof of concept for a T7 RNA polymerase based expression system for L. plantarum. Thereby we expanded the molecular toolbox for an industrial relevant and generally regarded as safe (GRAS) strain.


Subject(s)
Lactobacillus plantarum/genetics , Promoter Regions, Genetic , Recombinant Proteins/metabolism , Repressor Proteins/metabolism , Base Sequence , Blotting, Western , DNA-Directed RNA Polymerases/metabolism , Isopropyl Thiogalactoside/pharmacology , Lactobacillus plantarum/drug effects , Lactobacillus plantarum/growth & development , Lactose/pharmacology , Molecular Sequence Data , Plasmids/metabolism , Viral Proteins/metabolism , Xylose/pharmacology
2.
Plasmid ; 81: 9-20, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26038184

ABSTRACT

Lactobacillus plantarum CD033, a strain isolated from grass silage in Austria, harbors a 7.9 kb plasmid designated pCD033. Sequence analysis identified 14 open reading frames and 8 of these were supposed to be putative coding sequences. Gene annotation revealed no putative essential genes being plasmid encoded, but a plasmid addiction system based on a PemI/PemK-like toxin-antitoxin system, able to stabilize plasmid maintenance. Absence of a replication initiation protein, a double strand origin as well as a single strand origin on plasmid pCD033 suggests replication via a new type of theta mechanism, whereby plasmid replication is potentially initiated and regulated by non-coding RNA. Detailed examination of segregational stability of plasmid vectors consisting of pCD033-fragments, combined with a selection marker, resulted in definition of a stably maintained minimal replicon. A gene encoding a RepB/OrfX-like protein was found to be not essential for plasmid replication. Alignment of the amino acid sequence of this protein with related proteins unveiled a highly conserved amino acid motif (LLDQQQ). L. plantarum CD033 was cured of pCD033 resulting in the novel plasmid free strain L. plantarum 3NSH. Plasmid curing demonstrated that no essential features are provided by pCD033 under laboratory conditions.


Subject(s)
Lactobacillus plantarum/genetics , Plasmids/genetics , Amino Acid Sequence , Base Sequence , Computational Biology/methods , Gene Dosage , Gene Order , Molecular Sequence Annotation , Molecular Sequence Data , Open Reading Frames , Plasmids/chemistry , Replicon , Sequence Alignment , Sequence Analysis, DNA
3.
Microbiology (Reading) ; 161(7): 1356-68, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25934645

ABSTRACT

Secretion leaders are required to direct nascent proteins to the secretory pathway. They are of interest in the study of intracellular protein transport, and are required for the production of secretory recombinant proteins. Secretion leaders are processed in two steps in the endoplasmic reticulum and Golgi. Although yeast cells typically contain about 150 proteins entering the secretory pathway, only a low number of proteins are actually secreted to the cell supernatant. Analysis of the secretome of the yeast Pichia pastoris revealed that the most abundant secretory protein, which we named Epx1, belongs to the cysteine-rich secretory protein family CRISP. Surprisingly, the Epx1 secretion leader undergoes a three-step processing on its way to the cell exterior instead of the usual two-step processing. The Kex2 cleavage site within the P. pastoris Epx1 leader is not conserved in the homologues of most other yeasts. We studied the effect of exchanging the Kex2-cleavage motif on the secretory behaviour of reporter proteins fused to variants of the Epx1 leader sequence, and observed mistargeting for some but not all of the variants using fluorescence microscopy. By targeting several recombinant human proteins for secretion, we revealed that a short variant of the leader sequence, as well as the Epx1 signal sequence alone, resulted in the correct N-termini of the secreted proteins. Both leader variants proved to be very efficient, even exceeding the secretion levels obtained with commonly used secretion leaders. Taken together, the novel Epx1 secretion leader sequences are a valuable tool for recombinant protein production as well as basic research of intracellular transport.


Subject(s)
Fungal Proteins/metabolism , Pichia/metabolism , Protein Sorting Signals , Artificial Gene Fusion , DNA Mutational Analysis , Fungal Proteins/genetics , Luminescent Proteins/analysis , Luminescent Proteins/genetics , Microscopy, Fluorescence , Pichia/genetics , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics
4.
Microb Cell Fact ; 13: 150, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25410118

ABSTRACT

BACKGROUND: Lactobacillus plantarum constitutes a well-recognized food-grade system for the expression of recombinant proteins in the field of industrial and medical biotechnology. For applications in vivo or in biotechnological processes, the level of expression of e.g. antigens or enzymes is often critical, as expression levels should be of a certain effectiveness, yet, without putting too much strain to the overall system. The key factors that control gene expression are promoter strength, gene copy number and translation efficiency. In order to estimate the impact of these adjusting screws in L. plantarum CD033, we have tested several constitutive promoters in combination with high and low copy number plasmid backbones and varying space between the Shine-Dalgarno sequence and the start-codon. RESULTS: By combining strong promoters, such as transcription elongation factor promoters, isolated from L. plantarum CD033 and L. buchneri CD034, a synthetic promoter, originally derived from L. plantarum WCSF1 and a heterologous promoter derived from L. buchneri CD034 with a high and a low copy number origin of replication we demonstrated various expression levels of the model protein mCherry. All promoters were feasible for protein expression and in all cases, the high copy number origin of replication increased expression twofold. We found that the optimal spacer between the Shine-Dalgarno sequence and the start codon in L. plantarum consists of 8 nucleotides and elongation as well as shortening this sequence gradually down-regulates gene expression. CONCLUSIONS: We have evaluated the effects of a set of gene regulatory tools to fine tune recombinant gene expression in L. plantarum CD033. We have thus, provided potential expression vectors useful for constitutive protein expression in lactic acid bacteria ranging from moderate to strong production levels.


Subject(s)
Gene Expression , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Promoter Regions, Genetic , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
5.
Appl Microbiol Biotechnol ; 97(3): 1241-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22801711

ABSTRACT

A major contaminating host cell protein was identified in fed batch cultures of Pichia pastoris producing an antibody Fab fragment. Purification and peptide sequencing identified this protein to be related to the cysteine-rich secretory protein family. The same protein was also observed as one of the most abundantly secreted proteins in chemostat cultures of a wild type P. pastoris strain. It has an apparent molecular weight of 65 kDa, 2-fold higher than predicted from the amino acid sequence, which is due to high O-glycosylation. It was denominated extracellular protein X 1 (Epx1), as no clear function could be attributed to it. The EPX1 gene is upregulated in different stress situations, and the respective deletion strain was more susceptible than the wild type to the cell wall damaging agents Calcofluor white and Congo red. The EPX1 deletion strain (Δepx1) was evaluated for its suitability for recombinant protein production. No significant difference in growth and product formation was observed between the wild type and the Δepx1 strain. Batch purification of a Fab fragment produced in the Δepx1 strain highlighted its superior purity due to the decreased host cell protein load.


Subject(s)
Fungal Proteins/metabolism , Gene Deletion , Metabolic Engineering/methods , Pichia/metabolism , Technology, Pharmaceutical/methods , Biological Products/isolation & purification , Fungal Proteins/genetics , Pichia/genetics , Recombinant Proteins/isolation & purification
6.
Mycoses ; 54 Suppl 3: 48-55, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21995663

ABSTRACT

Representatives of the genus Pseudallescheria (anamorph: Scedosporium) are saprobes and the aetiologic agent of invasive mycosis in humans. After dissemination, the central nervous system (CNS) is one of the most affected organs. Prerequisites for the survival of Pseudallescheria/Scedosporium in the host are the ability to acquire nutrients and to evade the immune attack. The cleavage of complement compounds via the secretion of fungal proteases might meet both challenges since proteolytic degradation of proteins can provide nutrients and destroy the complement factors, a fast and effective immune weapon in the CNS. Therefore, we studied the capacity of different Pseudallescheria/Scedosporium species to degrade key elements of the complement cascade in the cerebrospinal fluid and investigated a correlation with the phylogenetic background. The majority of the Pseudallescheria apiosperma isolates tested were demonstrated to efficiently eliminate proteins like complement factors C3 and C1q, thus affecting two main components of a functional complement cascade, presumably by proteolytic degradation, and using them as nutrient source. In contrast, the tested strains of Pseudallescheria boydii have no or only weak capacity to eliminate these complement proteins. We hypothesise that the ability of Pseudallescheria/Scedosporium strains to acquire nutrients and to undermine the complement attack is at least partly phylogenetically determined.


Subject(s)
Complement System Proteins/cerebrospinal fluid , Immune Evasion , Pseudallescheria/classification , Pseudallescheria/pathogenicity , Scedosporium/classification , Scedosporium/pathogenicity , Brain Diseases/immunology , Brain Diseases/microbiology , Central Nervous System Fungal Infections/immunology , Central Nervous System Fungal Infections/microbiology , Complement C1q/cerebrospinal fluid , Complement C1q/immunology , Complement C3/cerebrospinal fluid , Complement C3/immunology , Humans , Mycoses/cerebrospinal fluid , Mycoses/immunology , Mycoses/microbiology , Phylogeny , Pseudallescheria/genetics , Scedosporium/genetics
7.
Appl Environ Microbiol ; 77(6): 2058-70, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21278273

ABSTRACT

By taking advantage of the available genome sequence of Ralstonia eutropha H16, glucose uptake in the UV-generated glucose-utilizing mutant R. eutropha G(+)1 was investigated by transcriptomic and proteomic analyses. Data revealed clear evidence that glucose is transported by a usually N-acetylglucosamine-specific phosphotransferase system (PTS)-type transport system, which in this mutant is probably overexpressed due to a derepression of the encoding nag operon by an identified insertion mutation in gene H16_A0310 (nagR). Furthermore, a missense mutation in nagE (membrane component EIICB), which yields a substitution of an alanine by threonine in NagE and may additionally increase glucose uptake, was identified. Phosphorylation of glucose is subsequently mediated by NagF (cytosolic PTS component EIIA-HPr-EI) or glucokinase (GlK), respectively. The inability of the defined deletion mutant R. eutropha G(+)1 ΔnagFEC to utilize glucose strongly confirms this finding. In addition, secondary effects of glucose, which is now intracellularly available as a carbon source, on the metabolism of the mutant cells in the stationary growth phase occurred: intracellular glucose degradation is stimulated by the stronger expression of enzymes involved in the 2-keto-3-deoxygluconate 6-phosphate (KDPG) pathway and in subsequent reactions yielding pyruvate. The intermediate phosphoenolpyruvate (PEP) in turn supports further glucose uptake by the Nag PTS. Pyruvate is then decarboxylated by the pyruvate dehydrogenase multienzyme complex to acetyl coenzyme A (acetyl-CoA), which is directed to poly(3-hydroxybutyrate). The polyester is then synthesized to a greater extent, as also indicated by the upregulation of various enzymes of poly-ß-hydroxybutyrate (PHB) metabolism. The larger amounts of NADPH required for PHB synthesis are delivered by significantly increased quantities of proton-translocating NAD(P) transhydrogenases. The current study successfully combined transcriptomic and proteomic investigations to unravel the phenotype of this hitherto-undefined glucose-utilizing mutant.


Subject(s)
Cupriavidus necator/genetics , Cupriavidus necator/metabolism , Gene Expression Profiling/methods , Glucose/metabolism , Proteome/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glucokinase/genetics , Glucokinase/metabolism , Hydroxybutyrates/metabolism , Operon/genetics , Phosphoenolpyruvate/metabolism , Phosphotransferases/genetics , Phosphotransferases/metabolism , Polyesters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...