Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Monit Assess ; 191(10): 625, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31501945

ABSTRACT

After a field experiment utilising electroosmosis and non-ionic surfactant Tween 80 as a remediation effort on the removal of polycyclic aromatic hydrocarbons (PAHs) from a long-term asphalt-contaminated soil, the PAH heterogeneity in the soil was yet extensive. This study come as a follow-up to address the following questions: (i) was PAH (re)distribution a consequence of the treatment? and (ii) to what extent does the surfactant affected PAH desorption and subsequent bioavailability? To answer question (i), we selected random soil samples from different locations of the field site before in situ remediation took place, and quantified and characterised soil organic matter by elemental analysis and solid-phase 13C nuclear magnetic resonance spectroscopy and PAH concentrations. Finally, batch desorption experiments with selected contaminated soil samples were carried out with and without 1% Tween 80 in the solution phase to address question (ii). Data shows that PAH concentrations were related neither to organic matter content nor to a high aromaticity of the organic matter, which serves as a proxy for the presence of tar oil. Soil heterogeneity is likely to be the cause of PAH heterogeneous distribution, but it is inferred that remediation causes weathering of the tar oil phase, resulting in the release and subsequent transport and sorption of PAH to inherent organic material. The results of the batch desorption experiments demonstrate PAH desorption up to 146 times when surfactant is present. However, Tween 80 does not enable biodegradation, since desorbed PAH molecules are entrapped inside surfactant micelles.


Subject(s)
Environmental Restoration and Remediation/methods , Polycyclic Aromatic Hydrocarbons/chemistry , Polysorbates/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Surface-Active Agents/chemistry , Adsorption , Magnetic Resonance Spectroscopy , Micelles
2.
Adv Colloid Interface Sci ; 245: 62-80, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28477867

ABSTRACT

This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of "classical" anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are considered in association with the synthetic methods by which the LDHs were produced. Special attention is paid to the LDH properties that are particularly relevant to water treatment, such as exchangeability ease of the interlayer anions and the LDH stability at the solid-water interface. Notably, the LDH properties (e.g., rich speciation, hydration, and the exchangeability ease of the interlayer anions with aqueous anions) are considered in the synthetic strategy context applied to the material preparation. One such promising synthetic method has been developed by the authors who supported their opinions by the unpublished data in addition to reviewing the literature. The reviewing approach allowed for establishing regularities between the parameters: the LDH synthetic method-structure/surface/interlayer-removal-suitability for water treatment. Specifically, this approach allowed for a conclusion about either the unsuitability or promising potential of some synthetic methods (or the removal approaches) used for the preparation of LDHs for water purification at larger scales. The overall reviewing approach undertaken by the authors in this work mainly complements the other reviews on LDHs (published over the past seven to eight years) and for the first time compares the properties of these materials beyond the nanoscale.

3.
J Synchrotron Radiat ; 23(2): 532-44, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26917141

ABSTRACT

Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K-edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free- and cation-bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K-edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated soil organic matter (SOM), but far less efficiently by hematite, Ca-saturated montmorillonite and Ca-saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K-edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P-retaining soil minerals in addition to spectra of free or cation-bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K-edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented.

4.
FEMS Microbiol Ecol ; 90(3): 770-82, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25303098

ABSTRACT

Artificial soils were used in this study to analyse the importance of different mineral compositions for the diversity of soil microorganisms. Variants containing montmorillonite (MT), illite (IL) and illite + ferrihydrite (IL+FH) were compared to each other. Bulk material and their particle size fractions, as obtained by ultracentrifugation and wet-sieving, were characterised for abundance and diversity of Bacteria, Archaea and Fungi. Samples were analysed 6 and 18 months after inoculation with sterilised manure and a soil-extracted microbial community. Generally, IL, and even more pronouncedly IL+FH, supported the growth of more Bacteria, Archaea and Fungi, than MT. This trend was most pronounced in the finest fraction (< 20 µm). The structural diversity of Fungi responded more strongly to the different mineral compositions than the Bacteria, for which particle size fractions were more important. Archaea established a specific community in the finest fraction and showed no response to the different mineral compositions. Overall, this study demonstrates that the mineral composition and the particle size fractions have specific and different selective effects on the three domains and, thus, suggests that these factors strongly contribute to niche separation and the high diversity of microbial communities in natural soils with complex mineral compositions.


Subject(s)
Archaea/classification , Bacteria/classification , Fungi/classification , Soil Microbiology , Soil/chemistry , Archaea/genetics , Archaea/growth & development , Bacteria/genetics , Bacteria/growth & development , Bentonite , Carbon Compounds, Inorganic/analysis , Ferric Compounds , Fungi/genetics , Fungi/growth & development , Manure , Microbial Consortia , Minerals , Nitrogen Compounds/analysis , Particle Size , RNA, Ribosomal/genetics , Soil/classification
5.
PLoS One ; 9(9): e106865, 2014.
Article in English | MEDLINE | ID: mdl-25222697

ABSTRACT

The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of complex interactions in soils for bioremediation applications.


Subject(s)
Environmental Pollutants/pharmacology , Phenanthrenes/pharmacology , Soil Microbiology , Soil/chemistry , Biodegradation, Environmental , Biodiversity , DNA, Bacterial/isolation & purification , DNA, Fungal/isolation & purification , Environmental Pollutants/chemistry , Manure , Phenanthrenes/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics
6.
Nat Commun ; 5: 2947, 2014.
Article in English | MEDLINE | ID: mdl-24399306

ABSTRACT

The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (<2 mm) topsoil with labelled litter, we find that only some of the clay-sized surfaces bind organic matter (OM). Surprisingly, <19% of the visible mineral areas show an OM attachment. OM is preferentially associated with organo-mineral clusters with rough surfaces. By combining nano-scale secondary ion mass spectrometry and isotopic tracing, we distinguish between new labelled and pre-existing OM and show that new OM is preferentially attached to already present organo-mineral clusters. These results, which provide evidence that only a limited proportion of the clay-sized surfaces contribute to OM sequestration, revolutionize our view of carbon sequestration in soils and the widely used carbon saturation estimates.

7.
FEMS Microbiol Ecol ; 86(1): 15-25, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23289489

ABSTRACT

To study the influence of the clay minerals montmorillonite (M) and illite (I), the metal oxides ferrihydrite (F) and aluminum hydroxide (A), and charcoal (C) on soil bacterial communities, seven artificial soils with identical texture provided by quartz (Q) were mixed with sterilized manure as organic carbon source before adding a microbial inoculant derived from a Cambisol. Bacterial communities established in artificial soils after 90 days of incubation were compared by DGGE analysis of bacterial and taxon-specific 16S rRNA gene amplicons. The bacterial community structure of charcoal-containing soils highly differed from the other soils at all taxonomic levels studied. Effects of montmorillonite and illite were observed for Bacteria and Betaproteobacteria, but not for Actinobacteria or Alphaproteobacteria. A weak influence of metal oxides on Betaproteobacteria was found. Barcoded pyrosequencing of 16S rRNA gene amplicons done for QM, QI, QIF, and QMC revealed a high bacterial diversity in the artificial soils. The composition of the artificial soils was different from the inoculant, and the structure of the bacterial communities established in QMC soil was most different from the other soils, suggesting that charcoal provided distinct microenvironments and biogeochemical interfaces formed. Several populations with discriminative relative abundance between artificial soils were identified.


Subject(s)
Bacteria/classification , Charcoal/pharmacology , Minerals/pharmacology , Soil Microbiology , Soil/chemistry , Actinobacteria/drug effects , Actinobacteria/genetics , Actinobacteria/isolation & purification , Alphaproteobacteria/classification , Alphaproteobacteria/drug effects , Alphaproteobacteria/genetics , Aluminum Hydroxide/pharmacology , Bacteria/genetics , Bacteria/isolation & purification , Bentonite/pharmacology , Betaproteobacteria/drug effects , Betaproteobacteria/genetics , Betaproteobacteria/isolation & purification , Ferric Compounds/pharmacology , Manure/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics
8.
FEMS Microbiol Ecol ; 86(1): 3-14, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23336569

ABSTRACT

Microbial communities in soil reside in a highly heterogeneous habitat where diverse mineral surfaces, complex organic matter and microorganisms interact with each other. This study aimed to elucidate the long-term effect of the soil mineral composition and charcoal on the microbial community composition established in matured artificial soils and their response to phenanthrene. One year after adding sterile manure to different artificial soils and inoculating microorganisms from a Cambisol, the matured soils were spiked with phenanthrene or not and incubated for another 70 days. 16S rRNA gene and internal transcribed spacer fragments amplified from total community DNA were analyzed by denaturing gradient gel electrophoresis. Metal oxides and clay minerals and to a lesser extent charcoal influenced the microbial community composition. Changes in the bacterial community composition in response to phenanthrene differed depending on the mineral composition and presence of charcoal, while no shifts in the fungal community composition were observed. The abundance of ring-hydroxylating dioxygenase genes was increased in phenanthrene-spiked soils except for charcoal-containing soils. Here we show that the formation of biogeochemical interfaces in soil is an ongoing process and that different properties present in artificial soils influenced the bacterial response to the phenanthrene spike.


Subject(s)
Phenanthrenes/pharmacology , Soil Microbiology , Soil Pollutants/pharmacology , Soil/chemistry , Aluminum Silicates , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Charcoal/pharmacology , Clay , Denaturing Gradient Gel Electrophoresis , Dioxygenases/genetics , Ecosystem , Fungi/classification , Fungi/drug effects , Fungi/genetics , Manure , Metals/pharmacology , Minerals/chemistry , Minerals/pharmacology , Oxides/pharmacology , RNA, Ribosomal, 16S/genetics
9.
Sci Total Environ ; 435-436: 1-6, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22842591

ABSTRACT

Polycyclic aromatic hydrocarbons (PAH) are persistent and toxic contaminants which are difficult to remove from fine porous material like clayey soils. The present work aims at studying two electroremediation techniques for the removal of PAHs from a spiked natural silt soil from Saudi Arabia and a silty loam soil from The Netherlands which has been exposed to tar contamination for over 100 years. The two techniques at focus are electro-osmosis and electrodialysis. The latter is applied for the first time for the removal of PAH. The efficiency of the techniques is studied using these two soils, having been subjected to different PAH contact times. Two surfactants were used: the non-ionic surfactant Tween 80 and anionic surfactant sodium dodecyl sulphate (SDS) to aid desorption of PAHs from the soil. Results show a large discrepancy in the removal rates between spiked soil and long-term field contaminated soil, as expected. In spiked soil, electro-osmosis achieves up to 85% while electrodialysis accomplishes 68% PAH removal. In field contaminated soil, electro-osmosis results in 35% PAH removal whereas electrodialysis results in 79%. Short recommendations are derived for the up-scale of the two techniques.


Subject(s)
Aluminum Silicates/chemistry , Dialysis/methods , Electroosmosis/methods , Environmental Restoration and Remediation/methods , Polycyclic Aromatic Hydrocarbons/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Adsorption , Clay , Dialysis/instrumentation , Electroosmosis/instrumentation , Environmental Restoration and Remediation/instrumentation , Netherlands , Saudi Arabia , Surface-Active Agents/chemistry
10.
J Microbiol Methods ; 89(1): 41-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22349079

ABSTRACT

The ferrozine and phenanthroline colorimetric assays are commonly applied for the determination of ferrous and total iron concentrations in geomicrobiological studies. However, accuracy of both methods depends on slight changes in their protocols, on the investigated iron species, and on geochemical variations in sample conditions. Therefore, we tested the performance of both methods using Fe(II)((aq)), Fe(III)((aq)), mixed valence solutions, synthetic goethite, ferrihydrite, and pyrite, as well as microbially-formed magnetite and a mixture of goethite and magnetite. The results were compared to concentrations determined with aqua regia dissolution and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Iron dissolution prior to the photometric assays included dissolution in 1M or 6M HCl, at 21 or 60°C, and oxic or anoxic conditions. Results indicated a good reproducibility of quantitative total iron determinations by the ferrozine and phenanthroline assays for easily soluble iron forms such as Fe(II)((aq)), Fe(III)((aq)), mixed valence solutions, and ferrihydrite. The ferrozine test underestimated total iron contents of some of these samples after dissolution in 1M HCl by 10 to 13%, whereas phenanthroline matched the results determined by ICP-AES with a deviation of 5%. Total iron concentrations after dissolution in 1M HCl of highly crystalline oxides such as magnetite, a mixture of goethite and magnetite, and goethite were underestimated by up to 95% with both methods. When dissolving these minerals in 6M HCl at 60°C, the ferrozine method was more reliable for total iron content with an accuracy of ±5%, related to values determined with ICP-AES. Phenanthroline was more reliable for the determination of total pyritic iron as well as ferrous iron after incubation in 1M HCl at 21°C in the Fe(II)((aq)) sample with a recovery of 98%. Low ferrous iron concentrations of less than 0.5mM were overestimated in a Fe(III) background by up to 150% by both methods. Heating of mineral samples in 6M HCl increased their solubility and susceptibility for both photometric assays which is a need for total iron determination of highly crystalline minerals. However, heating also rendered a subsequent reliable determination of ferrous iron impossible due to fast abiotic oxidation. Due to the low solubility of highly crystalline samples, the determination of total iron is solely possible after dissolution in 6M HCl at 60°C which on the other hand makes determination of ferrous iron impossible. The recommended procedure for ferrous iron determination is therefore incubation at 21°C in 6M HCl, centrifugation, and subsequent measurement of ferrous iron in the supernatant. The different procedures were tested during growth of G. sulfurreducens on synthetic ferrihydrite. Here, the phenanthroline test was more accurate compared to the ferrozine test. However, the latter provided easy handling and seemed preferable for larger amounts of samples.


Subject(s)
Bacteria/chemistry , Chemistry Techniques, Analytical/methods , Colorimetry/methods , Environmental Microbiology , Iron/analysis
11.
Appl Environ Microbiol ; 76(14): 4765-71, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20495045

ABSTRACT

A novel PCR primer system that targets a wide range of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD(alpha)) genes of both Gram-positive and Gram-negative bacteria was developed and used to study their abundance and diversity in two different soils in response to phenanthrene spiking. The specificities and target ranges of the primers predicted in silico were confirmed experimentally by cloning and sequencing of PAH-RHD(alpha) gene amplicons from soil DNA. Cloning and sequencing showed the dominance of phnAc genes in the contaminated Luvisol. In contrast, high diversity of PAH-RHD(alpha) genes of Gram-positive and Gram-negative bacteria was observed in the phenanthrene-spiked Cambisol. Quantitative real-time PCR based on the same primers revealed that 63 days after phenanthrene spiking, PAH-RHD(alpha) genes were 1 order of magnitude more abundant in the Luvisol than in the Cambisol, while they were not detected in both control soils. In conclusion, sequence analysis of the amplicons obtained confirmed the specificity of the novel primer system and revealed a soil type-dependent response of PAH-RHD(alpha) gene-carrying soil bacteria to phenanthrene spiking.


Subject(s)
Bacteria/classification , Bacterial Proteins/genetics , Biodiversity , Dioxygenases/genetics , Metagenome , Phenanthrenes/metabolism , Soil Microbiology , Bacteria/genetics , Cloning, Molecular , Cluster Analysis , DNA Primers/genetics , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction/methods , Sequence Analysis, DNA , Sequence Homology
12.
Appl Environ Microbiol ; 76(1): 184-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19915036

ABSTRACT

Microbial iron reduction is considered to be a significant subsurface process. The rate-limiting bioavailability of the insoluble iron oxyhydroxides, however, is a topic for debate. Surface area and mineral structure are recognized as crucial parameters for microbial reduction rates of bulk, macroaggregate iron minerals. However, a significant fraction of iron oxide minerals in the subsurface is supposed to be present as nanosized colloids. We therefore studied the role of colloidal iron oxides in microbial iron reduction. In batch growth experiments with Geobacter sulfurreducens, colloids of ferrihydrite (hydrodynamic diameter, 336 nm), hematite (123 nm), goethite (157 nm), and akaganeite (64 nm) were added as electron acceptors. The colloidal iron oxides were reduced up to 2 orders of magnitude more rapidly (up to 1,255 pmol h(-1) cell(-1)) than bulk macroaggregates of the same iron phases (6 to 70 pmol h(-1) cell(-1)). The increased reactivity was not only due to the large surface areas of the colloidal aggregates but also was due to a higher reactivity per unit surface. We hypothesize that this can be attributed to the high bioavailability of the nanosized aggregates and their colloidal suspension. Furthermore, a strong enhancement of reduction rates of bulk ferrihydrite was observed when nanosized ferrihydrite aggregates were added.


Subject(s)
Colloids/metabolism , Ferric Compounds/metabolism , Geobacter/metabolism , Biological Availability , Oxidation-Reduction
13.
J Colloid Interface Sci ; 286(1): 294-302, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15848431

ABSTRACT

Clay liners are charged membranes and show semipermeable behavior regarding the flow of fluids, electrical charge, chemicals and heat. At zero gradients of temperature and hydrostatic pressure, a salt concentration gradient across a compacted clay sample induces not only an osmotic flux of water and diffusion of salt across the membrane but also an electrical potential gradient, defined as membrane potential. Laboratory experiments were performed on commercially available bentonite samples in a rigid-wall permeameter connected to two electrically insulated fluid reservoirs filled with NaCl solutions of different concentrations and equipped with Ag/AgCl electrodes to measure the electrical potential gradient. The effect of membrane potential could be cancelled out by short-circuiting the clay with the so-called virtual shortcut. The potential gradient across the sample is brought to zero with a negative feedback circuit. It was observed that the water flux and the diffusion of Cl- were hindered by the occurrence of a membrane potential, indicating that an electroosmotic counterflow is induced. Flow parameters were calculated with modified coupled flow equations of irreversible thermodynamics. They were in excellent agreement with values reported in the literature. Comparing the method of short-circuiting with a study elsewhere, where the electrodes were physically short-circuited, it was shown that the virtual shortcut is more appropriate because physically short-circuiting induces additional effects that are attributed to the fluxes.

SELECTION OF CITATIONS
SEARCH DETAIL
...