Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res Perspect ; 8(5): e00653, 2020 10.
Article in English | MEDLINE | ID: mdl-32930523

ABSTRACT

More than ten million patients worldwide have been diagnosed with coronavirus disease 19 (COVID-19) to date (WHO situation report, 1st July 2020). There is no vaccine to prevent infection with the causative organism, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), nor a cure. In the struggle to devise potentially useful therapeutics in record time, the repurposing of existing compounds is a key route of action. In this hypothesis paper, we argue that the bisbenzylisoquinoline and calcium channel blocker tetrandrine, originally extracted from the plant Stephania tetrandra and utilized in traditional Chinese medicine, may have potential in the treatment of COVID-19 and should be further investigated. We collate and review evidence for tetrandrine's putative mechanism of action in viral infection, specifically its recently discovered antagonism of the two-pore channel 2 (TPC2). While tetrandrine's particular history of use provides a very limited pharmacological dataset, there is a suggestion from the available evidence that it could be effective at doses used in clinical practice. We suggest that further research to investigate this possibility should be conducted.


Subject(s)
Antiviral Agents/administration & dosage , Benzylisoquinolines/administration & dosage , Betacoronavirus/drug effects , Calcium Channel Blockers/administration & dosage , Calcium Channels/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Antiviral Agents/adverse effects , Benzylisoquinolines/adverse effects , Betacoronavirus/pathogenicity , COVID-19 , Calcium Channel Blockers/adverse effects , Calcium Channels/metabolism , Coronavirus Infections/diagnosis , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Drug Interactions , Host-Pathogen Interactions , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Signal Transduction , COVID-19 Drug Treatment
2.
J Biol Chem ; 290(35): 21376-92, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26152717

ABSTRACT

Pancreatic ß cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca(2+) action potentials due to the activation of voltage-dependent Ca(2+) channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca(2+) release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic ß cells. NAADP-regulated Ca(2+) release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca(2+) from the endolysosomal system, resulting in localized Ca(2+) signals. We show here that NAADP-mediated Ca(2+) release from endolysosomal Ca(2+) stores activates inward membrane currents and depolarizes the ß cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca(2+) release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca(2+) signals, and insulin secretion. Our findings implicate NAADP-evoked Ca(2+) release from acidic Ca(2+) storage organelles in stimulus-secretion coupling in ß cells.


Subject(s)
Calcium Channels/metabolism , Endosomes/metabolism , Insulin-Secreting Cells/metabolism , NADP/analogs & derivatives , Animals , Calcium/metabolism , Calcium Channels/genetics , Cells, Cultured , Glucose/metabolism , Insulin/metabolism , Insulin-Secreting Cells/cytology , Male , Membrane Potentials , Mice , Mice, Knockout , NADP/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...