Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(4)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37108872

ABSTRACT

Despite recent studies suggesting that marine fungi are ubiquitous in oceanic systems and involved in organic matter degradation, their role in the carbon cycle of the oceans is still not characterized and fungal respiration and production are understudied. This study focused on determining fungal growth efficiencies and its susceptibility to temperature differences and nutrient concentration. Hence, respiration and biomass production of three fungal isolates (Rhodotorula mucilaginosa, Rhodotorula sphaerocarpa, Sakaguchia dacryoidea) were measured in laboratory experiments at two temperatures and two nutrient concentrations. We found that fungal respiration and production rates differed among species, temperature, and nutrient concentration. Fungal respiration and production were higher at higher temperatures, but higher fungal growth efficiencies were observed at lower temperatures. Nutrient concentration affected fungal respiration, production, and growth efficiency, but its influence differed among species. Altogether, this study provides the first growth efficiency estimates of pelagic fungi, providing novel insights into the role of fungi as source/sink of carbon during organic matter remineralization. Further research is now needed to unravel the role of pelagic fungi in the marine carbon cycle, a topic that gains even more importance in times of increasing CO2 concentrations and global warming.

2.
J Fungi (Basel) ; 7(9)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34575747

ABSTRACT

Natural autofluorescence is a widespread phenomenon observed in different types of tissues and organisms. Depending on the origin of the autofluorescence, its intensity can provide insights on the physiological state of an organism. Fungal autofluorescence has been reported in terrestrial and human-derived fungal samples. Yet, despite the recently reported ubiquitous presence and importance of marine fungi in the ocean, the autofluorescence of pelagic fungi has never been examined. Here, we investigated the existence and intensity of autofluorescence in five different pelagic fungal isolates. Preliminary experiments of fungal autofluorescence at different growth stages and nutrient conditions were conducted, reflecting contrasting physiological states of the fungi. In addition, we analysed the effect of natural autofluorescence on co-staining with DAPI. We found that all the marine pelagic fungi that were studied exhibited autofluorescence. The intensity of fungal autofluorescence changed depending on the species and the excitation wavelength used. Furthermore, fungal autofluorescence varied depending on the growth stage and on the concentration of available nutrients. Collectively, our results indicate that marine fungi can be auto-fluorescent, although its intensity depends on the species and growth condition. Hence, oceanic fungal autofluorescence should be considered in future studies when fungal samples are stained with fluorescent probes (i.e., fluorescence in situ hybridization) since this could lead to misinterpretation of results.

SELECTION OF CITATIONS
SEARCH DETAIL
...