Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 21539, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34728728

ABSTRACT

ATP-sensitive K+ (KATP) channels couple cellular metabolism to electrical activity in many cell types. Wild-type KATP channels are comprised of four pore forming (Kir6.x) and four regulatory (sulfonylurea receptor, SURx) subunits that each contain RKR endoplasmic reticulum retention sequences that serve to properly translocate the channel to the plasma membrane. Truncated Kir6.x variants lacking RKR sequences facilitate plasma membrane expression of functional Kir6.x in the absence of SURx; however, the effects of channel truncation on plasma membrane orientation have not been explored. To investigate the role of truncation on plasma membrane orientation of ATP sensitive K+ channels, three truncated variants of Kir6.2 were used (Kir6.2ΔC26, 6xHis-Kir6.2ΔC26, and 6xHis-EGFP-Kir6.2ΔC26). Oocyte expression of Kir6.2ΔC26 shows the presence of a population of inverted inserted channels in the plasma membrane, which is not present when co-expressed with SUR1. Immunocytochemical staining of intact and permeabilized HEK293 cells revealed that the N-terminus of 6xHis-Kir6.2ΔC26 was accessible on both sides of the plasma membrane at roughly equivalent ratios, whereas the N-terminus of 6xHis-EGFP-Kir6.2Δ26 was only accessible on the intracellular face. In HEK293 cells, whole-cell electrophysiological recordings showed a ca. 50% reduction in K+ current upon addition of ATP to the extracellular solution for 6xHis-Kir6.2ΔC26, though sensitivity to extracellular ATP was not observed in 6xHis-EGFP-Kir6.2ΔC26. Importantly, the population of channels that is inverted exhibited similar function to properly inserted channels within the plasma membrane. Taken together, these data suggest that in the absence of SURx, inverted channels can be formed from truncated Kir6.x subunits that are functionally active which may provide a new model for testing pharmacological modulators of Kir6.x, but also indicates the need for added caution when using truncated Kir6.2 mutants.


Subject(s)
Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Cell Membrane/metabolism , Oocytes/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Sulfonylurea Receptors/metabolism , Animals , HEK293 Cells , Humans , Ion Channel Gating , Oocytes/cytology , Potassium Channels, Inwardly Rectifying/genetics , Sulfonylurea Receptors/genetics , Xenopus laevis
2.
J Biomed Mater Res A ; 97(2): 212-7, 2011 May.
Article in English | MEDLINE | ID: mdl-21391298

ABSTRACT

Phosphatidyl choline (PC)-based materials have been found to be resistant to nonspecific protein adhesion in vitro. In this study, a PC-based planar supported phospholipid bilayer composed of 1,2-bis[10-(2',4'-hexadienoyloxy)decanoyl]-sn-glycero-3-phosphocholine (bis-SorbPC or BSPC) was generated on piranha-treated silicon wafers by vesicle deposition. The bilayer was polymerized with redox initiation forming a stable 4-nm thick coating. Polymerized lipid bilayers (PLBs) were characterized and tested for uniformity, with ellipsometry and contact angle. Cellular adhesion and morphological changes in RAW 264.7 macrophages were investigated in vitro on PLBs and compared to bare silicon controls. Fluorescent and scanning electron microscopy were used to observe changes in cellular morphology. The PLBs showed much lower cellular adhesion than bare silicon controls. Of the cells that attached to the PLBs, a very low percentage showed the same morphological expressions seen on the controls. It is hypothesized that proteins adsorb to the defects in the PLBs, caused by incomplete polymerization, and this mediates the observed minimal cellular attachment and morphological changes. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A: , 2011.


Subject(s)
Lipid Bilayers/chemistry , Macrophages/cytology , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Polymers/chemistry , Adsorption , Animals , Biocompatible Materials , Cell Adhesion , Cell Line , In Vitro Techniques , Macrophages/drug effects , Mice , Microscopy, Electron, Scanning/methods , Microscopy, Fluorescence/methods , Phenotype , Surface Properties
3.
Langmuir ; 27(5): 1882-90, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21226498

ABSTRACT

The stabilization of suspended planar lipid membranes, or black lipid membranes (BLMs), through polymerization of mono- and bis-functionalized dienoyl lipids was investigated. Electrical properties, including capacitance, conductance, and dielectric breakdown voltage, were determined for BLMs composed of mono-DenPC, bis-DenPC, mono-SorbPC, and bis-SorbPC both prior to and following photopolymerization, with diphytanoyl phosphocholine (DPhPC) serving as a control. Poly(lipid) BLMs exhibited significantly longer lifetimes and increased the stability of air-water transfers. BLM stability followed the order bis-DenPC > mono-DenPC ≈ mono-SorbPC > bis-SorbPC. The conductance of bis-SorbPC BLMs was significantly higher than that of the other lipids, which is attributed to a high density of hydrophilic pores, resulting in relatively unstable membranes. The use of poly(lipid) BLMs as matrices for supporting the activity of an ion channel protein (IC) was explored using α-hemolysin (α-HL), a model IC. Characteristic i-V plots of α-HL were maintained following photopolymerization of bis-DenPC, mono-DenPC, and mono-SorbPC, demonstrating the utility of these materials for preparing more durable BLMs for single-channel recordings of reconstituted ICs.


Subject(s)
Ion Channels/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Polymerization , Electric Capacitance , Electric Conductivity , Hemolysin Proteins/metabolism , Phosphorylcholine/chemistry , Phosphorylcholine/metabolism , Suspensions
4.
J Am Chem Soc ; 132(20): 7086-93, 2010 May 26.
Article in English | MEDLINE | ID: mdl-20441163

ABSTRACT

Suspended planar lipid membranes (or black lipid membranes (BLMs)) are widely used for studying reconstituted ion channels, although they lack the chemical and mechanical stability needed for incorporation into high-throughput biosensors and biochips. Lipid polymerization enhances BLM stability but is incompatible with ion channel function when membrane fluidity is required. Here, we demonstrate the preparation of a highly stable BLM that retains significant fluidity by using a mixture of polymerizable and nonpolymerizable phospholipids. Alamethicin, a voltage-gated peptide channel for which membrane fluidity is required for activity, was reconstituted into mixed BLMs prepared using bis-dienoyl phosphatidylcholine (bis-DenPC) and diphytanoyl phosphatidylcholine (DPhPC). Polymerization yielded BLMs that retain the fluidity required for alamethicin activity yet are stable for several days as compared to a few hours prior to polymerization. Thus, these polymerized, binary composition BLMs feature both fluidity and long-term stability.


Subject(s)
Ion Channels/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Fluidity , Membranes, Artificial , Polymers/chemistry , Polymers/metabolism , Alamethicin/metabolism , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Suspensions , Time Factors
5.
J Am Chem Soc ; 131(19): 6662-3, 2009 May 20.
Article in English | MEDLINE | ID: mdl-19397328

ABSTRACT

Black lipid membranes (BLMs) are widely used for recording the activity of incorporated ion channel proteins. However, BLMs are inherently unstable structures that typically rupture within a few hours after formation. Here, stabilized BLMs were formed using the polymerizable lipid bis-dienoyl phosphatidylcholine (bis-DenPC) on glass pipettes of approximately 10 microm (I.D.). After polymerization, these BLMs maintained steady conductance values for several weeks, as compared to a few hours for unpolymerized membranes. The activity of an ion channel, alpha-hemolysin, incorporated into bis-DenPC BLMs prior to polymerization, was maintained for 1 week after BLM formation and polymerization. These lifetimes are a substantial improvement over those achievable with conventional BLM technologies. Polymerized BLMs containing functional ion channels may represent an enabling technology for development of robust biosensors and drug screening devices.


Subject(s)
Biosensing Techniques , Drug Evaluation, Preclinical/methods , Ion Channels/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...