Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Talanta ; 276: 126247, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759358

ABSTRACT

This work presents a significant investigation involving both electrochemical experiment and quantum chemical simulation approaches. The objective was to characterize the electrochemical detection of dopamine (DA). The detection was carried out using a modified carbon paste electrode (CPE) incorporating bentonite (Bent) and l-cysteine (CySH) (named as CySH/Bent/CPE). To understand and explain the oxidation mechanism of DA on the CySH/Bent modified electrode surface, the coupling of the two approaches were exploited. The CySH/Bent/CPE showed excellent electroactivity toward DA such as good sensibility, selectivity, stability, and regenerative ability. The developed sensor shows a dynamic linear range from 0.8 to 80 µM with a limit of detection and quantification of 0.5 µM and 1.5 µM, respectively. During the quantitative analysis of DA in presence of ascorbic acid (AA) and uric acid (UA) the electrochemical oxidation signals of AA, DA, and UA distinctly appear as three separate peaks. The potential differences between the peaks are 190 mv, 150 mv, and 340 mV for the AA-DA, DA-UA, and AA-UA oxidation pairs, respectively. These observations stem from square wave voltammetry (SWV) studies, along with the corresponding redox peak potential separations. The developed sensor is simple and accurate to monitor DA in human serum samples. On the other hand, CySH acts as an electrocatalyst on the CySH/Bent/CPE surface by increasing its active electron transfer sites, as suggested by the quantum chemical modeling with analytical results of Fukui. Furthermore, the voltammetric results obtained agree well with the theoretical calculations.


Subject(s)
Bentonite , Carbon , Cysteine , Dopamine , Electrochemical Techniques , Electrodes , Dopamine/blood , Dopamine/analysis , Dopamine/chemistry , Cysteine/chemistry , Cysteine/analysis , Cysteine/blood , Carbon/chemistry , Bentonite/chemistry , Electrochemical Techniques/methods , Quantum Theory , Oxidation-Reduction , Limit of Detection , Humans , Uric Acid/blood , Uric Acid/chemistry , Uric Acid/analysis
2.
Int J Pharm ; 649: 123658, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38042382

ABSTRACT

Graphene quantum dots (GQDs) are promising biomaterials with potential applicability in several areas due to their many useful and unique features. Among different applications, GQDs are photodynamic therapy agents that generate single oxygen and improve antimicrobial activity. In the present study, and for the first time, GQD were isolated from the Cannabis sativa L. seeds to generate C-GQDs as a new biomaterial for antibacterial and wound healing applications. Detailed characterization was performed using FTIR, UV-vis, Raman spectra, photoluminescence, TEM examination, HRTEM, ζ-potential, and XRD. Our results revealed in vitro and in vivo antibacterial activity of C-GQDs against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with reduced minimal inhibitory concentration of 236 µg/mL for both strains. In addition, the C-GQDs confirmed the in vitro analysis and exhibited anti-inflammatory activity by reducing the level of neutrophils in blood and skin tissue. C-GQDs act by accelerating re-epithelization and granulation tissue formation. In addition, C-GQDs restored neurobehavioral alteration induced by incisional wounds by reducing oxidative stress, decreasing cortisol levels, increasing anxiolytic-like effect, and increasing vertical locomotor activity. The wound-healing effects of C-GQDs support its role as a potential therapeutic agent for diverse skin injuries.


Subject(s)
Cannabis , Graphite , Quantum Dots , Animals , Mice , Graphite/pharmacology , Escherichia coli , Staphylococcus aureus , Wound Healing , Anti-Bacterial Agents/pharmacology
3.
Heliyon ; 9(11): e22001, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027594

ABSTRACT

The utilization of dye adsorption through metal-organic frameworks represents an eco-friendly and highly effective approach in real water treatment. Here, ultrasound assisted adsorption approach was employed for the remediation of three dyes including methylene blue (MB), malachite green (MG), and congo red (CR) from real water samples using zirconium(IV)-based adsorbent (UiO-66-NH2). The adsorbent was characterized for structural, elemental, thermal and morphological features through XRD, XPS, FTIR, thermogravimetric analysis, SEM, BET , and Raman spectroscopy. The adsorption capacity of adsorbent to uptake the pollutants in aqueous solutions was investigated under different experimental conditions such as amount of UiO-66-NH2 at various contact durations, temperatures, pH levels, and initial dye loading amounts. The maximum removal of dyes under optimal conditions was found to be 938, 587, and 623 mg g-1 towardMB, MG, and CR, respectively. The adsorption of the studied dyes on the adsorbent surface was found to be a monolayer and endothermic process. The probable mechanism for the adsorption was chemisorption and follows pseudo-second-order kinetics. From the findings of regeneration studies, it was deduced that the adsorbent can be effectively used for three consecutive cycles without any momentous loss in its adsorption efficacy. Furthermore, UiO-66-NH2 with ultrasound-assisted adsorption might help to safeguard the environment and to develop new strategies for sustainability of natural resources.

4.
Chemosphere ; 341: 140090, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37678590

ABSTRACT

In this work, a nanocomposite structured magnetic metal-organic framework named as Fe3O4@UiO-66-NH2 was prepared via a simple hydrothermal approach. The as-mentioned nanocomposite was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and the Brunauer-Emmett-Teller (BET) techniques. Using the Fe3O4@UiO-66-NH2 as a nanosorbent, an easy and highly effective approach was developed to preconcentrate nine organic UV filters before gas chromatography-mass spectrometry (GC-MS) analysis. Different conditions influencing the extraction efficiency encompassing the sorbent amount, nature and volume of desorption solvent, desorption time, pH of the sample, and extraction time, were examined. Under the optimal experimental parameters, the Fe3O4@UiO-66-NH2-based magnetic solid phase extraction and GC-MS (MSPE-GC-MS) demonstrated linearity in the range of 0.03-1500 ng/L (R2 ≥ 0.9974) and the reproducibility, expressed as RSD, was ≤7.5%. The limits of detection ranged between 0.01 and 0.07 ng/L and limits of quantification were in the range of 0.03-0.4 ng/L. Finally, the suggested approach was satisfactorily utilized to determine nine organic UV filters in different water samples (analytical recoveries between 86.5% and 104.2%).


Subject(s)
Magnetic Phenomena , Solid Phase Extraction , Reproducibility of Results , Water
5.
Environ Res ; 238(Pt 1): 117170, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37722582

ABSTRACT

In light of potential risks of heavy metal exposure, diverse aptasensors have been developed through the combination of aptamers with nanomaterials for the timely and efficient detection of metals in environmental and biological matrices. Aptamer-based sensors can benefit from multiple merits such as heightened sensitivity, facile production, uncomplicated operation, exceptional specificity, enhanced stability, low immunogenicity, and cost-effectiveness. This review highlights the detection capabilities of nanomaterial-based aptasensors for heavy-metal and metalloid ions based on their performance in terms of the basic quality assurance parameters (e.g., limit of detection, linear dynamic range, and response time). Out of covered studies, dendrimer/CdTe@CdS QDs-based ECL aptasensor was found as the most sensitive option with an LOD of 2.0 aM (atto-molar: 10-18 M) detection for Hg2+. The existing challenges in the nanomaterial-based aptasensors and their scientific solutions are also discussed.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Cadmium Compounds , Metalloids , Metals, Heavy , Nanostructures , Quantum Dots , Tellurium , Ions
6.
Food Chem Toxicol ; 178: 113904, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37356558

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the degeneration of substantia nigra dopaminergic neurons. Many therapeutic strategies were explored for PD with no success. In this study, we investigated the efficacy of graphene oxide nanoparticles (GONPs) using the reserpine model of PD. Low concentrations GONPs were utilized as a therapeutic agent in many neurodegenerative diseases. We assessed the neurobehavioral alterations in the reserpine model of PD and investigated the neuroprotective and antioxidant effects of GONPs in this model. Thirty male mice were separated into three groups (N = 10): C (control); Res (Reserpine 0.25 mg/kg); Res + GONPs (Reserpine 0.25 mg/kg and GONPs 25 mg/kg). Our results showed that reserpine neurotoxicity induced hypoactivity with a significant increase of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) levels in the brain and brainstem. GONPs reversed the reserpine-induced hypoactivity concomitant with decreased neuronal CAT and MDA levels. These findings support the potential use of GONPs as an antioxidant agent in the central nervous system (CNS) that protects against neurodegeneration in the reserpine PD model.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Parkinson Disease , Male , Mice , Animals , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Reserpine/toxicity , Reserpine/therapeutic use , Disease Models, Animal , Oxidative Stress , Antioxidants/metabolism , Dopaminergic Neurons , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
7.
Biotechnol Adv ; 66: 108156, 2023 09.
Article in English | MEDLINE | ID: mdl-37084799

ABSTRACT

The combination of nanomaterials (NMs) and aptamers into aptasensors enables highly specific and sensitive detection of diverse pollutants. The great potential of aptasensors is recognized for the detection of diverse emerging organic pollutants (EOPs) in different environmental and biological matrices. In addition to high sensitivity and selectivity, NM-based aptasensors have many other advantages such as portability, miniaturization, facile use, and affordability. This work showcases the recent advances achieved in the design and fabrication of NM-based aptasensors for monitoring EOPs (e.g., hormones, phenolic contaminants, pesticides, and pharmaceuticals). On the basis of their sensing mechanisms, the aptasensing systems can be classified as electrochemical, colorimetric, PEC, fluorescence, SERS, and ECL aptasensors. Special attention has been paid to the fabrication processes, analytical reliability, and sensing mechanisms of NM-based aptasensors. Further, the practical utility of aptasensing approaches has also been assessed based on their basic performance metrics (e.g., detection limits, sensing ranges, and response times).


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Environmental Pollutants , Nanostructures , Reproducibility of Results
8.
Biosens Bioelectron ; 197: 113767, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34768064

ABSTRACT

Surface plasmon resonance approach is a highly useful option to offer optical and label-free detection of target bioanalytes with numerous advantages (e.g., low-cost fabrication, appreciable sensitivity, label-free detection, and outstanding accuracy). As such, it allows early diagnosis of cancer biomarkers to monitor tumor progression and to prevent the recurrence of oncogenic tumors. This work highlights the recent progress in SPR biosensing technology for the diagnosis of various cancer types (e.g., lung, breast, prostate, and ovarian). Further, the performance of various SPR biosensors is also evaluated in terms of the basic quality assurance criteria (e.g., limit of detection (LOD), selectivity, sensor response time, and reusability). Finally, the limitations and future challenges associated with SPR biosensors are also discussed with respect to cancer biomarker detection.


Subject(s)
Biosensing Techniques , Neoplasms , Biomarkers, Tumor , Humans , Limit of Detection , Male , Neoplasms/diagnosis , Surface Plasmon Resonance , Technology
9.
Biosens Bioelectron ; 193: 113617, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34555756

ABSTRACT

As a major cause of deaths in developed countries, cardiovascular disease (CVD) has been a big burden for human health systems. Its early and rapid detection is crucial to efficiently apply appropriate on time therapy and to ultimately reduce the associated mortality rate. Aptamers, known as single-stranded DNA/RNA or oligonucleotides containing receptors and/or catalytic properties, have been widely employed in biodetection platforms due to their beneficial properties. Like antibodies, aptamers have served as artificial target receptors in affinity biosensors. Currently, advanced biosensors with improved sensitivity and specificity are fabricated by the synergistic combination of aptamers and diverse nanomaterials. Herein, we review the current development and applications of nanomaterial-based aptasensors for the recognition of CVD biomarkers with special emphasis on electrochemical and optical technologies. The performance of aptasensors has been assessed further in terms of key quality assurance metrics along with discussions on recent technologies developed for the amplification of signals with enhanced portability.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Cardiovascular Diseases , Nanostructures , Cardiovascular Diseases/diagnosis , Electrochemical Techniques , Humans
10.
Foods ; 10(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068704

ABSTRACT

Endocrine disrupting chemicals (EDCs) are exogenous substances capable of altering the human hormone system and causing various diseases such as infertility and cancer as a result. In this work, a method for determining twenty-three different EDCs including parabens, alkylphenols, phenylphenols, organophosphorus pesticides, bisphenol A and triclosan in dairy products was developed. Samples are conditioned by addition of acetonitrile containing 1% formic acid, centrifugation and clean-up of the extract by continuous solid-phase extraction. EDCs in the extract are derivatised by heating in a microwave oven and quantified by gas chromatography-mass spectrometry. The proposed method features good limits of detection (6-40 ng/kg) and precision (relative standard deviation < 7.6%); also, it is scarcely subject to matrix effects (1-20%). EDC recoveries from spiked samples ranged from 80 to 108%. The method was used to analyse a total of 33 samples of dairy products including cow, sheep and goat milk, yoghourt, milkshakes, cheese, cream, butter and custard. Bisphenol A was the individual contaminant detected in the greatest number of samples, at concentrations from 180 to 4800 ng/kg. 2-Phenylphenol and ethylparaben were found in more than one-half, at concentrations over the range 130-3500 and 89-4300 ng/kg, respectively. In contrast, alkylphenols, organophosphorus pesticides and triclosan were detected in none.

11.
Chemosphere ; 263: 128158, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297136

ABSTRACT

In this work, we developed an analytical approach using an ultrasound-assisted extraction (UAE) followed by continuous solid-phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) detection in order to determine simultaneously 24 endocrine disrupting chemicals such as alkylphenols, organophosphorus pesticides, parabens, phenylphenols, triclosan and bisphenol A in vegetable and fruit samples. Different variables influencing UAE and SPE performance were optimized in order to maximize removal of the sample matrix and preconcentration of the analytes. The optimized extraction and GC-MS quantitation conditions provided acceptable sensitivity, selectivity, accuracy and precision. Limits of detection spanned the range 0.6-25 ng kg-1, recoveries were near-quantitative and relative standard deviations ranged from 4.5 to 7.6%. The proposed method was used to analyse 11 vegetable samples and 7 fruit samples purchased at various Spanish and Moroccan supermarkets. Most samples contained more than three of the analytes, at levels between 5.8 and 580 ng kg-1.


Subject(s)
Endocrine Disruptors , Endocrine Disruptors/analysis , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Limit of Detection , Solid Phase Extraction , Vegetables
12.
Anal Bioanal Chem ; 412(11): 2621-2631, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32055905

ABSTRACT

The high toxicity of endocrine disrupting chemicals (EDCs) has promoted the development of effective techniques for their separation and detection in various types of matrices. In this work, we developed a method for the rapid, reliable determination of 24 EDCs from six different families of organic compounds (viz. alkylphenols, phenylphenols, bisphenol A, parabens, organophosphorus pesticides and triclosan) in cereal-based foodstuffs. The target compounds were subjected to ultrasound-assisted extraction with methanol, cleaned up and preconcentrated by automated solid-phase extraction, and derivatized for their determination by gas chromatography-mass spectrometry (GC-MS). The method features low limits of detection (0.4-23 ng/kg), good precision (3.8-7.2%) and recoveries from 82% to 105%. The proposed method was used to analyse 12 samples of products purchased in Andalusia (Spain). A total of 14 analytes were detected in most of the samples. In any case, their concentrations (3.8-620 ng/kg) were all lower than the applicable maximum residue limits.


Subject(s)
Edible Grain/chemistry , Endocrine Disruptors/analysis , Food Analysis/methods , Food Contamination/analysis , Gas Chromatography-Mass Spectrometry/methods , Alkylation , Benzhydryl Compounds/analysis , Limit of Detection , Organophosphorus Compounds/analysis , Parabens/analysis , Pesticides/analysis , Phenols/analysis , Triclosan/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...