Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 11(17): 7184-7189, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32787312

ABSTRACT

High-resolution X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) were used to characterize IrO2(110) films on Ir(100) with stoichiometric as well as OH-rich terminations. Core-level Ir 4f and O 1s peaks were identified for the undercoordinated Ir and O atoms and bridging and on-top OH groups at the IrO2(110) surfaces. Peak assignments were validated by comparison of the core-level shifts determined experimentally with those computed using DFT, quantitative analysis of the concentrations of surface species, and the measured variation of the Ir 4f peak intensities with photoelectron kinetic energy. We show that exposure of the IrO2(110) surface to O2 near room temperature produces a large quantity of on-top OH groups because of reaction of background H2 with the surface. The peak assignments made in this study can serve as a foundation for future experiments designed to utilize XPS to uncover atomic-level details of the surface chemistry of IrO2(110).

2.
Rev Sci Instrum ; 90(3): 033703, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30927778

ABSTRACT

We have combined three techniques, High Energy Surface X-Ray Diffraction (HESXRD), Surface Optical Reflectance, and Planar Laser Induced Fluorescence in an operando study of CO oxidation over a Pd(100) catalyst. We show that these techniques provide useful new insights such as the ability to verify that the finite region being probed by techniques such as HESXRD is representative of the sample surface as a whole. The combination is also suitable to determine when changes in gas composition or surface structure and/or morphology occur and to subsequently correlate them with high temporal resolution. In the study, we confirm previous results which show that the Pd(100) surface reaches high activity before an oxide can be detected. Furthermore, we show that the single crystal catalyst surface does not behave homogeneously, which we attribute to the surface being exposed to inhomogeneous gas conditions in mass transfer limited scenarios.

3.
Phys Rev Lett ; 120(12): 126101, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29694082

ABSTRACT

Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.

4.
Science ; 343(6172): 758-61, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24482118

ABSTRACT

Understanding the interaction between surfaces and their surroundings is crucial in many materials-science fields, such as catalysis, corrosion, and thin-film electronics, but existing characterization methods have not been capable of fully determining the structure of surfaces during dynamic processes, such as catalytic reactions, in a reasonable time frame. We demonstrate an x-ray-diffraction-based characterization method that uses high-energy photons (85 kiloelectron volts) to provide unexpected gains in data acquisition speed by several orders of magnitude and enables structural determinations of surfaces on time scales suitable for in situ studies. We illustrate the potential of high-energy surface x-ray diffraction by determining the structure of a palladium surface in situ during catalytic carbon monoxide oxidation and follow dynamic restructuring of the surface with subsecond time resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...