Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 28(35): 355601, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27365361

ABSTRACT

Charge transport in Na0.63CoO2 thin film deposited by a spin-coating method was investigated experimentally by time-domain terahertz spectroscopy and theoretically using Monte Carlo calculations of charge response in nano-structured materials. The dominating type of transport mechanism over the entire investigated range of temperatures (20-300 K) is a metallic-like conductivity of charges partly confined in constituting nano-sized grains. Due to the granular character of our thin film, the scattering time at low temperatures is limited by scattering on grain boundaries and the conductivity is strongly suppressed due to capture of a major fraction of charge carriers in deep traps. Nevertheless, our experimental setup and the applied model allowed us to distinguish the parameters related to the grain interior from those influenced by grain boundaries, and to conclude that the metallic type of conductivity is the intrinsic property relevant to single crystal materials.

2.
J Phys Condens Matter ; 28(17): 175901, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27023160

ABSTRACT

Dielectric response of perovskite Sr1-xBaxMnO3 (x = 0.43 and 0.45) ceramics was investigated using microwave, THz and infrared spectroscopic techniques in order to study the ferroelectric and antiferromagnetic phase transitions with critical temperatures TC ≈ 350 K and TN ≈ 200 K, respectively. The two lowest-frequency polar phonons are overdamped above TN and they exhibit pronounced softening on heating towards TC. Nevertheless, permittivity ε' in the THz range shows only a small anomaly at TC because the phonon contribution to ε' is rather small. The phonons are coupled with a central mode which provides the main contribution to the dielectric anomaly at TC. Thus, the ferroelectric phase transition has characteristics of a crossover from displacive to order-disorder type. At the same time, the intrinsic THz central peak is partially screened by conductivity and related Maxwell-Wagner relaxation, which dominates the microwave and lower-frequency spectra. Below TN, the ferroelectric distortion markedly decreases, which has an influence on the frequencies of both the central and soft modes. Therefore, ε' in the THz range increases at TN on cooling. In spite of the strong spin-phonon coupling near TN, surprisingly no magnetodielectric effect was observed in the THz spectra upon applying magnetic field of up to 7 T, which is in contradiction with the theoretically expected huge magnetoelectric coupling. We explain this fact as due to the insensitivity of TN to magnetic field.

3.
Rev Sci Instrum ; 86(1): 011301, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25638064

ABSTRACT

A round robin test aiming at measuring the high-temperature thermoelectric properties was carried out by a group of European (mainly French) laboratories (labs). Polycrystalline skutterudite Co0.97Ni0.03Sb3 was characterized by Seebeck coefficient (8 labs), electrical resistivity (9 labs), thermal diffusivity (6 labs), mass volume density (6 labs), and specific heat (6 labs) measurements. These data were statistically processed to determine the uncertainty on all these measured quantities as a function of temperature and combined to obtain an overall uncertainty on the thermal conductivity (product of thermal diffusivity by density and by specific heat) and on the thermoelectric figure of merit ZT. An increase with temperature of all these uncertainties is observed, in agreement with growing difficulties to measure these quantities when temperature increases. The uncertainties on the electrical resistivity and thermal diffusivity are most likely dominated by the uncertainty on the sample dimensions. The temperature-averaged (300-700 K) relative standard uncertainties at the confidence level of 68% amount to 6%, 8%, 11%, and 19% for the Seebeck coefficient, electrical resistivity, thermal conductivity, and figure of merit ZT, respectively. Thermal conductivity measurements appear as the least accurate. The moderate value of the temperature-averaged relative expanded (confidence level of 95%) uncertainty of 17% on the mean of ZT is essential in establishing Co0.97Ni0.03Sb3 as a high temperature standard n-type thermoelectric material.

4.
J Phys Condens Matter ; 26(11): 116003, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24590179

ABSTRACT

Crystal and magnetic structures of the x = 0.2 member of the La0.8-xTbxCa0.2CoO3 perovskite series have been determined from powder neutron diffraction. Enhancement of the diffraction peaks due to ferromagnetic or cluster glass ordering is observed below TC = 55 K. The moments first evolve on Co sites, and ordering of Ising-type Tb(3+) moments is induced at lower temperatures by a molecular field due to Co ions. The final magnetic configuration is collinear Fx for the cobalt subsystem, while it is canted FxCy for terbium ions. The rare-earth moments align along local Ising axes within the ab-plane of the orthorhombic Pbnm structure. The behavior in external fields up to 70-90 kOe has been probed by magnetization and heat capacity measurements. The dilute terbium ions contribute to significant coercivity and remanence that both steeply increase with decreasing temperature. A remarkable manifestation of the Tb(3+) Ising character is the observation of a low-temperature region with an anomalously large linear term of heat capacity and its field dependence. Similar behaviors are detected also for other terbium dopings x = 0.1 and 0.3.


Subject(s)
Calcium/chemistry , Lanthanum/chemistry , Magnetic Fields , Minerals/chemistry , Terbium/chemistry , Models, Molecular , Neutron Diffraction , Powder Diffraction , Temperature
5.
J Phys Condens Matter ; 25(21): 216006, 2013 May 29.
Article in English | MEDLINE | ID: mdl-23644576

ABSTRACT

The electric, magnetic, and thermal properties of three perovskite cobaltites with the same 30% hole doping and ferromagnetic ground state were investigated down to very low temperatures. With decreasing size of large cations, the ferromagnetic Curie temperature and spontaneous moments of cobalt are gradually suppressed: TC = 130 K, 55 K and 25 K and m = 0.68 µB, 0.34 µB and 0.23 µB for Nd0.7Sr0.3CoO3, Pr0.7Ca0.3CoO3 and Nd0.7Ca0.3CoO3, respectively. The moment reduction with respect to the moment of the conventional ferromagnet La0.7Sr0.3CoO3 (T(C) = 230 K, m = 1.71 µB) in the so-called low spin/intermediate spin (IS/LS) state for Co(3+)/Co(4+) was originally interpreted using a phase-separation scenario. Based on the present results, mainly the analysis of the Schottky peak originating from Zeeman splitting of the ground-state Kramers doublet of Nd(3+), we find, however, that the ferromagnetic phase in Nd0.7Ca0.3CoO3 and likely also in Pr0.7Ca0.3CoO3 is uniformly distributed over the whole sample volume, despite the severe drop of moments. The ground state of these compounds is identified with the LS/LS-related phase derived theoretically by Sboychakov et al (2009 Phys. Rev. B 80 024423). The ground state of Nd0.7Sr0.3CoO3 with an intermediate cobalt moment is inhomogeneous due to competition between the LS/LS and IS/LS phases. In the theoretical part of the study, the crystal field split levels for 4f(3) (Nd(3+)), 4f(2) (Pr(3+)) and 4f(1) (Ce(3+) or Pr(4+)) are calculated and their magnetic characteristics are presented.

6.
Phys Rev Lett ; 99(3): 037006, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17678319

ABSTRACT

Temperature dependences of the magnetic susceptibility, specific heat, and electrical resistivity have been measured for the Mo(3)Sb(7) compound in the 0.6-350 K range. This compound exhibits bulk superconductivity occurring at 2.25 K and follows the Kadowaki-Woods relation, A/gamma(2)=1.0 x 10(-5) microOmega x cm(K x mol/mJ)(2), as a heavy-fermion system does. We show, from experimental evidence and theoretical argument, that Mo(3)Sb(7) can be classified as a coexistent superconductor-spin fluctuation system. The McMillan equation including paramagnon effects was found to give an accurate estimation of the transition temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...