Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Dev Cell ; 57(16): 1937-1956.e8, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35998584

ABSTRACT

The complex architecture of the murine fetus originates from a simple ball of pluripotent epiblast cells, which initiate morphogenesis upon implantation. In turn, this establishes an intermediate state of tissue-scale organization of the embryonic lineage in the form of an epithelial monolayer, where patterning signals delineate the body plan. However, how this major morphogenetic process is orchestrated on a cellular level and synchronized with the developmental progression of the epiblast is still obscure. Here, we identified that the small GTPase Rap1 plays a critical role in reshaping the pluripotent lineage. We found that Rap1 activity is controlled via Oct4/Esrrb input and is required for the transmission of polarization cues, which enables the de novo epithelialization and formation of tricellular junctions in the epiblast. Thus, Rap1 acts as a molecular switch that coordinates the morphogenetic program in the embryonic lineage, in sync with the cellular states of pluripotency.


Subject(s)
Embryo Implantation , Germ Layers , Animals , Cell Differentiation , Gene Expression Regulation, Developmental , Mice , Morphogenesis
2.
Cells ; 11(2)2022 01 13.
Article in English | MEDLINE | ID: mdl-35053389

ABSTRACT

Irreparable DNA damage following ionizing radiation (IR) triggers prolonged DNA damage response and induces premature senescence. Cellular senescence is a permanent state of cell-cycle arrest characterized by chromatin restructuring, altered nuclear morphology and acquisition of secretory phenotype, which contributes to senescence-related inflammation. However, the mechanistic connections for radiation-induced DNA damage that trigger these senescence-associated hallmarks are poorly understood. In our in vitro model of radiation-induced senescence, mass spectrometry-based proteomics was combined with high-resolution imaging techniques to investigate the interrelations between altered chromatin compaction, nuclear envelope destabilization and nucleo-cytoplasmic chromatin blebbing. Our findings confirm the general pathophysiology of the senescence-response, with disruption of nuclear lamin organization leading to extensive chromatin restructuring and destabilization of the nuclear membrane with release of chromatin fragments into the cytosol, thereby activating cGAS-STING-dependent interferon signaling. By serial block-face scanning electron microscopy (SBF-SEM) whole-cell datasets were acquired to investigate the morphological organization of senescent fibroblasts. High-resolution 3-dimensional (3D) reconstruction of the complex nuclear shape allows us to precisely visualize the segregation of nuclear blebs from the main nucleus and their fusion with lysosomes. By multi-view 3D electron microscopy, we identified nanotubular channels formed in lamin-perturbed nuclei of senescent fibroblasts; the potential role of these nucleo-cytoplasmic nanotubes for expulsion of damaged chromatin has to be examined.


Subject(s)
Cell Nucleus/radiation effects , Cell Nucleus/ultrastructure , Cellular Senescence/radiation effects , Fibroblasts/radiation effects , Fibroblasts/ultrastructure , Imaging, Three-Dimensional , Microscopy, Electron , Radiation, Ionizing , Cell Line , Cell Nucleus/pathology , Cell Shape/radiation effects , Chromatin Assembly and Disassembly , Fibroblasts/pathology , Humans , Nanotubes/ultrastructure , Proteomics
3.
Sci Adv ; 7(11)2021 03.
Article in English | MEDLINE | ID: mdl-33692105

ABSTRACT

During the peri-implantation stages, the mouse embryo radically changes its appearance, transforming from a hollow-shaped blastocyst to an egg cylinder. At the same time, the epiblast gets reorganized from a simple ball of cells to a cup-shaped epithelial monolayer enclosing the proamniotic cavity. However, the cavity's function and mechanism of formation have so far been obscure. Through investigating the cavity formation, we found that in the epiblast, the process of lumenogenesis is driven by reorganization of intercellular adhesion, vectoral fluid transport, and mitotic paracellular water influx from the blastocoel into the emerging proamniotic cavity. By experimentally blocking lumenogenesis, we found that the proamniotic cavity functions as a hub for communication between the early lineages, enabling proper growth and patterning of the postimplantation embryo.

4.
J Neuropathol Exp Neurol ; 76(10): 908-916, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28922850

ABSTRACT

Insight into processes leading to rupture of intracranial aneurysms (IAs) may identify biomarkers for rupture or lead to management strategies reducing the risk of rupture. We characterized and quantified (ultra)structural differences between unruptured and ruptured aneurysmal walls. Six unruptured and 6 ruptured IA fundi were resected after microsurgical clipping and analyzed by correlative light microscopy for quantitative analysis (proportion of the vessel wall area) and transmission electron microscopy for qualitative ultrastructural analysis. Quantitative analysis revealed extensive internal elastic lamina (IEL) thickening in ruptured IA (36.3% ± 15%), while thin and fragmented IEL were common in unruptured IA (5.6% ± 7.1%). Macrophages were increased in ruptured IA (28.3 ± 24%) versus unruptured IA (2.7% ± 5.5%), as were leukocytes (12.85% ± 10% vs 0%). Vasa vasorum in ruptured but not in unruptured IA contained vast numbers of inflammatory cells and extravasation of these cells into the vessel wall. In conclusion, detection of thickened IEL, leaky vasa vasorum, and heavy inflammation as seen in ruptured IA in comparison to unruptured IA may identify aneurysms at risk of rupture, and management strategies preventing development of vasa vasorum or inflammation may reduce the risk of aneurysmal rupture.


Subject(s)
Aneurysm, Ruptured/pathology , Blood Vessels/pathology , Blood Vessels/ultrastructure , Intracranial Aneurysm/pathology , Stereotaxic Techniques , Adult , Aged , Endothelium/pathology , Endothelium/ultrastructure , Female , Humans , Male , Microscopy, Electron, Transmission , Middle Aged , Muscle, Smooth/pathology , Muscle, Smooth/ultrastructure , Plasma Cells/pathology , Plasma Cells/ultrastructure , Young Adult
5.
Acta Neuropathol ; 127(5): 699-711, 2014 May.
Article in English | MEDLINE | ID: mdl-24429546

ABSTRACT

The trafficking of cytotoxic CD8(+) T lymphocytes across the lining of the cerebral vasculature is key to the onset of the chronic neuro-inflammatory disorder multiple sclerosis. However, the mechanisms controlling their final transmigration across the brain endothelium remain unknown. Here, we describe that CD8(+) T lymphocyte trafficking into the brain is dependent on the activity of the brain endothelial adenosine triphosphate-binding cassette transporter P-glycoprotein. Silencing P-glycoprotein activity selectively reduced the trafficking of CD8(+) T cells across the brain endothelium in vitro as well as in vivo. In response to formation of the T cell-endothelial synapse, P-glycoprotein was found to regulate secretion of endothelial (C-C motif) ligand 2 (CCL2), a chemokine that mediates CD8(+) T cell migration in vitro. Notably, CCL2 levels were significantly enhanced in microvessels isolated from human multiple sclerosis lesions in comparison with non-neurological controls. Endothelial cell-specific elimination of CCL2 in mice subjected to experimental autoimmune encephalomyelitis also significantly diminished the accumulation of CD8(+) T cells compared to wild-type animals. Collectively, these results highlight a novel (patho)physiological role for P-glycoprotein in CD8(+) T cell trafficking into the central nervous system during neuro-inflammation and illustrate CCL2 secretion as a potential link in this mechanism.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Brain/immunology , CD8-Positive T-Lymphocytes/physiology , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Transendothelial and Transepithelial Migration/physiology , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Blood-Brain Barrier/physiology , Brain/blood supply , Brain/pathology , CD4-Positive T-Lymphocytes/physiology , Cell Line , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Mice, Inbred C57BL , Mice, Knockout , Microvessels/pathology , Microvessels/physiopathology , Multiple Sclerosis/pathology , ATP-Binding Cassette Sub-Family B Member 4
6.
Cell ; 156(1-2): 277-90, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24439382

ABSTRACT

Central nervous system myelin is a multilayered membrane sheath generated by oligodendrocytes for rapid impulse propagation. However, the underlying mechanisms of myelin wrapping have remained unclear. Using an integrative approach of live imaging, electron microscopy, and genetics, we show that new myelin membranes are incorporated adjacent to the axon at the innermost tongue. Simultaneously, newly formed layers extend laterally, ultimately leading to the formation of a set of closely apposed paranodal loops. An elaborated system of cytoplasmic channels within the growing myelin sheath enables membrane trafficking to the leading edge. Most of these channels close with ongoing development but can be reopened in adults by experimentally raising phosphatidylinositol-(3,4,5)-triphosphate levels, which reinitiates myelin growth. Our model can explain assembly of myelin as a multilayered structure, abnormal myelin outfoldings in neurological disease, and plasticity of myelin biogenesis observed in adult life.


Subject(s)
Axons/metabolism , Myelin Sheath/metabolism , Animals , Cells, Cultured , Central Nervous System/metabolism , Mice , Neuroglia/metabolism , Oligodendroglia/metabolism , Zebrafish
7.
Vasc Cell ; 4(1): 12, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22929066

ABSTRACT

BACKGROUND: Cellular senescence is associated with cellular dysfunction and has been shown to occur in vivo in age-related cardiovascular diseases such as atherosclerosis. Atherogenesis is accompanied by intimal accumulation of LDL and increased extravasation of monocytes towards accumulated and oxidized LDL, suggesting an affected barrier function of vascular endothelial cells. Our objective was to study the effect of cellular senescence on the barrier function of non-senescent endothelial cells. METHODS: Human umbilical vein endothelial cells were cultured until senescence. Senescent cells were compared with non-senescent cells and with co-cultures of non-senescent and senescent cells. Adherens junctions and tight junctions were studied. To assess the barrier function of various monolayers, assays to measure permeability for Lucifer Yellow (LY) and horseradish peroxidase (PO) were performed. RESULTS: The barrier function of monolayers comprising of senescent cells was compromised and coincided with a change in the distribution of junction proteins and a down-regulation of occludin and claudin-5 expression. Furthermore, a decreased expression of occludin and claudin-5 was observed in co-cultures of non-senescent and senescent cells, not only between senescent cells but also along the entire periphery of non-senescent cells lining a senescent cell. CONCLUSIONS: Our findings show that the presence of senescent endothelial cells in a non-senescent monolayer disrupts tight junction morphology of surrounding young cells and increases the permeability of the monolayer for LY and PO.

8.
Dis Model Mech ; 4(1): 57-66, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21045210

ABSTRACT

Tie-2 is a member of the receptor tyrosine kinase family and is required for vascular remodeling and maintenance of mammalian vessel integrity. A number of mutations in the human TIE2 gene have been identified in patients suffering from cutaneomucosal venous malformations and ventricular septal defects. How exactly Tie-2 signaling pathways play different roles in both vascular development and vascular stability is unknown. We have generated a zebrafish line carrying a stop mutation in the kinase domain of the Tie-2 receptor. Mutant embryos lack Tie-2 protein, but do not display any defect in heart and vessel development. Simultaneous loss of Tie-1 and Tie-2, however, leads to a cardiac phenotype. Our study shows that Tie-1 and Tie-2 are not required for early heart development, yet they have redundant roles for the maintenance of endocardial-myocardial connection in later stages. Tie-2 and its ligand Angiopoietin-1 have also been reported to play an important role in vessel stability. We used atorvastatin and simvastatin, drugs that cause bleeding in wild-type zebrafish larvae, to challenge vessel stability in tie-2 mutants. Interestingly, recent clinical studies have reported hemorrhagic stroke as a side effect of atorvastatin treatment. Exposure of embryos to statins revealed that tie-2 mutants are significantly protected from statin-induced bleeding. Furthermore, tie-2 mutants became less resistant to bleeding after VE-cadherin knockdown. Taken together, these data show that atorvastatin affects vessel stability through Tie-2, and that VE-cadherin and Tie-2 act in concert to allow vessel remodeling while playing a role in vessel stability. Our study introduces an additional vertebrate model to study in vivo the function of Tie-2 in development and disease.


Subject(s)
Blood Vessels/pathology , Heart/embryology , Organogenesis , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Antigens, CD/metabolism , Atorvastatin , Base Sequence , Blood Vessels/drug effects , Blood Vessels/embryology , Blood Vessels/ultrastructure , Cadherins/metabolism , Codon, Terminator/genetics , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/pathology , Endocardium/drug effects , Endocardium/pathology , Gene Knockdown Techniques , Head/pathology , Heart/drug effects , Hemorrhage/pathology , Heptanoic Acids/pharmacology , Lymphatic Vessels/drug effects , Lymphatic Vessels/embryology , Molecular Sequence Data , Mutation/genetics , Myocardium/pathology , Organogenesis/drug effects , Protein Structure, Tertiary , Pyrroles/pharmacology , Receptor, TIE-1/metabolism , Receptor, TIE-2/chemistry , Receptor, TIE-2/genetics , Receptor, TIE-2/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics
9.
Traffic ; 11(1): 138-50, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20002353

ABSTRACT

Caveolae are invaginations of the plasma membrane involved in multiple cellular processes, including transcytosis. In this paper we present an extensive 3-D electron tomographic study of the endothelial caveolar system in situ. Analysis of large cellular volumes of (high-pressure frozen, freeze-substituted and epon-embedded) human umbilical vein endothelial cells (HUVECs) provided a notable view on the architecture of the caveolar system that comprises--as confirmed by 3-D immunolabeling for caveolin of 'intact' cells--bona fide caveolae, free plasmalemmal vesicles, racemose invaginations and free multi-caveolar bodies. Application of template matching to tomograms allowed the 3-D localization of caveolar membrane coatings in a robust manner. In this way we observed that bona fide endothelial caveolae, cryofixed and embedded in their cellular context, show a spiral organization of the coating as shown in the past for chemically fixed and freeze-etched caveolae from fibroblasts. Meticulous 3-D analysis further revealed that the coatings are distributed in triads of spirals over the caveolar bulb and neck. Remarkably, this coating distribution is consistently present over the membranes of the other members of the caveolar system in HUVECs. The novel observations that we present clarify the ultrastructural complexity of the 'intact' caveolar system, setting a detailed morphological basis for its functional diversity.


Subject(s)
Caveolae/ultrastructure , Electron Microscope Tomography , Endothelial Cells/ultrastructure , Caveolae/metabolism , Caveolins/metabolism , Cell Line , Endothelial Cells/metabolism , Humans , Microscopy, Electron, Transmission , Protein Transport
10.
J Cell Mol Med ; 13(9B): 3463-74, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19438808

ABSTRACT

UNLABELLED: During collateral artery growth, monocytes adhere to the endothelium and secrete cytokines from the perivascular space promoting arteriogenesis. Recently, the endothelial glycocalyx has been shown to modulate leucocyte infiltration in atherogenic regions. The role of this endothelial surface coating in arteriogenesis, however, has not been investigated so far. We now report that local plasma levels of hyaluronic acid are specifically increased in collateral arterial blood of coronary artery disease patients and hypothesized that components of the endothelial glycocalyx are shed during arteriogenesis, resulting in decreased glycocalyx dimensions and an increased leucocyte extravasation. In a rabbit model of femoral artery ligation, electron microscopy revealed a decrease in glycocalyx dimensions in collateral arteries compared with quiescent anastomoses (67.5 +/- 47.2 nm versus 101.0 +/- 11.3 nm; P < 0.001). This decrease was correlated with a higher number of perivascular macrophages around collateral arteries. The additional glycocalyx perturbation by local hyaluronidase infusion almost completely removed the endothelial surface layer and temporarily stimulated leucocyte accumulation in the perivascular space. However, complete perturbation of the glycocalyx by hyaluronidase infusion resulted in a significant attenuation of collateral artery growth assessed by microsphere-based perfusion measurements (ml/min/100 mmHg: hyaluronidase: 27.5 +/- 3.5; CONTROLS: 47.1 +/- 3.83; P < 0.001) and a lower percentage of actively proliferating vascular smooth muscle cells. A decreased expression of the shear-stress regulated pro-arteriogenic genes eNOS and TGF-beta1 suggests an impaired mechanotransduction as the underlying mechanisms. For the first time, we describe the role of the endothelial glycocalyx in collateral artery growth. Although complete abrogation led to attenuated arteriogenesis, shedding of glycocalyx components is observed during collateral artery growth.


Subject(s)
Arteries/pathology , Gene Expression Regulation , Glycocalyx/metabolism , Leukocytes/cytology , Neovascularization, Physiologic , Aged , Animals , Cell Adhesion , Constriction, Pathologic/pathology , Endothelial Cells/cytology , Female , Humans , Male , Microscopy, Electron/methods , Microspheres , Middle Aged , Nitric Oxide Synthase Type III/metabolism , Rabbits
11.
Cardiovasc Res ; 81(1): 187-96, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18805782

ABSTRACT

AIMS: In a recent report, we established at the genome-wide level those genes that are specifically upregulated in the endothelium of atherosclerotic plaques in human arteries. As the transcriptome data revealed that mRNA for the tetraspanin family member CD81 is significantly and specifically upregulated in the endothelium overlying early atheroma, we set out to validate these results on the protein level, and investigate the functional consequences of CD81 upregulation. METHODS AND RESULTS: Immunohistochemical analysis in an independent set of donor arteries verified in the endothelium of early human atherosclerotic lesions the enhanced expression of CD81, which appears oxidative stress-dependent. Using lentiviral overexpression and silencing in human umbilical endothelial cells, we established in an in vitro flow adhesion assay that elevated endothelial CD81 is associated with increased monocyte adhesion to non-activated CD81-transduced endothelial cells, approaching the levels normally only attained after tumour necrosis factor alpha stimulation. The CD81 effect was dependent on both intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), as it was abolished in the presence of a mixture of anti-ICAM-1 and anti-VCAM-1 antibodies. Flow cytometry revealed that increased CD81 levels did not increase total ICAM-1 and VCAM-1 surface expression. Instead, it concentrated the available adhesion molecules into membrane clusters, as indicated by confocal and electron microscopy. CD81 also colocalized with ICAM-1 and VCAM-1 in the adhesion rings around bound monocytes. CONCLUSION: Endothelial CD81 upregulated in early human atheroma has the potential to play a crucial role in the initial stages of atherosclerotic plaque formation by increasing monocyte adhesion prior to the full-blown inflammatory response.


Subject(s)
Antigens, CD/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology , Endothelium, Vascular/metabolism , Monocytes/metabolism , Monocytes/pathology , Biomarkers/metabolism , Cell Adhesion , Cells, Cultured , Humans , Intercellular Adhesion Molecule-1/metabolism , Oxidative Stress/physiology , Tetraspanin 28 , Up-Regulation/physiology , Vascular Cell Adhesion Molecule-1/metabolism
12.
J Am Soc Nephrol ; 17(12): 3447-57, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17065241

ABSTRACT

Because of its dynamic structure, the omentum plays a key role in the immunity of the peritoneal cavity by orchestrating peritoneal cell recruitment. Because mast cells accumulate in the omentum upon experimental peritoneal dialysis (PD) and may produce angiogenic/profibrotic factors, it was hypothesized that mast cells mediate omental tissue remodeling during PD. Daily treatment with conventional PD fluid (PDF) for 5 wk resulted in a strong omental remodeling response, characterized by an approximately 10-fold increase in mast cell density (P < 0.01), an approximately 20-fold increase in vessel density (P < 0.02), an approximately 20-fold increase in the number of milky spots (P < 0.01), and a four-fold increase in submesothelial matrix thickness (P < 0.0003) in wild-type rats. In contrast, all PDF-induced omental changes were significantly reduced in mast cell-deficient Ws/Ws rats or in wild-type rats that were treated orally with a mast cell stabilizer cromoglycate. A time-course experiment showed mast cell accumulation immediately before the formation of blood vessels and milky spots. Functionally, PDF evoked a peritoneal cell influx, which was significantly reduced in Ws/Ws rats (P < 0.04) and in wild-type rats that were treated with cromoglycate (P < 0.03). Cromoglycate treatment also completely prevented PDF-induced omental adhesions to the catheter tip (P = 0.0002). Mesothelial damage, angiogenesis, and fibrosis of mesentery and parietal peritoneum as well as glucose absorption rate and ultrafiltration capacity proved to be mast cell independent. Data strongly support the hypothesis that mast cells mediate PDF-induced omental tissue remodeling and, subsequently, peritoneal cell influx and adhesion formation, providing therapeutic possibilities of modulating omental function.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Cromolyn Sodium/pharmacology , Mast Cells/physiology , Neovascularization, Physiologic/drug effects , Omentum/physiopathology , Peritoneal Dialysis , Animals , Bicarbonates/pharmacology , Dialysis Solutions/pharmacology , Disease Models, Animal , Lactates/pharmacology , Male , Mast Cells/drug effects , Microcirculation/physiology , Omentum/cytology , Rats , Rats, Inbred Strains , Vascular Endothelial Growth Factor A/metabolism
13.
Perit Dial Int ; 26(1): 101-7, 2006.
Article in English | MEDLINE | ID: mdl-16538883

ABSTRACT

BACKGROUND: In experimental peritoneal dialysis (PD) studies, the occurrence of peritonitis is a confounder in the interpretation of effects of chronic peritoneal exposure to dialysis solutions. Since fluid cannot be drained in most experimental PD models in the rat, it is impossible to diagnose peritonitis based on dialysate white blood cell counts. To study the value of serum markers for the presence of peritonitis, alpha-2-macroglobulin (alpha2M) and albumin were measured in rats with and without peritonitis after chronic exposure to dialysis solutions. To further investigate the time course of these markers in relation to the severity of peritonitis, nondialyzed rats were challenged with increasing numbers of bacteria and followed for 28 days. METHODS: In the first study, alpha2M and albumin were measured in rats exposed to glucose/lactate-based dialysis fluid before sacrifice. A comparison was made between animals with peritonitis, as judged from the presence of extensive infiltrates after sacrifice (gold standard) and/or clinical signs of peritonitis, or absence of peritonitis and infiltrates. In the second study, rats were intraperitoneally (IP) injected with 3 different concentrations of Staphylococcus aureus, and serum alpha2M and albumin were measured at various time points. RESULTS: In the first study, serum alpha2M was higher and serum albumin was lower in animals with peritonitis compared to animals without peritonitis (both p < 0.05). In the second study, induction of alpha2M was clearly dependent on the inoculum concentration. Peak values of alpha2M were found at days 1 and 3. At all time points after inoculation, alpha2M was higher in all injected groups compared to the control group. Serum albumin values decreased in the highest inoculum group and remained decreased until 28 days after IP injection. Despite a low sensitivity, serum alpha2M > 40 mg/L and albumin < 32 g/L had a specificity of 100% for peritonitis. CONCLUSIONS: Measurement of alpha2M and albumin once per month is an additional tool in the diagnosis of silent peritonitis in the chronic peritoneal exposure model in the rat. Levels of alpha2M > 40 mg/L and albumin < 32 g/L are strong indicators for peritonitis. However, normal values do not exclude infectious peritonitis.


Subject(s)
Peritoneal Dialysis/adverse effects , Peritonitis/blood , Serum Albumin/metabolism , alpha-Macroglobulins/metabolism , Animals , Biomarkers/blood , Dialysis Solutions/toxicity , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Male , Peritonitis/etiology , Peritonitis/pathology , Rats , Rats, Wistar , Severity of Illness Index
14.
Kidney Int ; 68(5): 2362-7, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16221241

ABSTRACT

BACKGROUND: Mesothelial cell transplantation has been suggested to improve mesothelial repair after surgery, recurrent peritonitis and peritoneal dialysis. METHODS: In this study we evaluated mesothelial cell transplantation during the resolution phase of experimentally thioglycollate-induced peritonitis in rats. To this end 4 x 10(6) DiO-labeled autologous mesothelial cells were transplanted 1 week after peritonitis induction. Peritoneal inflammation and permeability characteristics were evaluated after another week. RESULTS: Mesothelial cell transplantation after peritonitis resulted in incorporation of these cells in the parietal mesothelial lining, leading to an acute transient submesothelial thickening which was not seen in transplanted animals without prior peritonitis induction. Long-term functioning of these repopulated mesothelial cells leaded to peritoneal activation as evidenced by a approximately twofold increase in peritoneal lymphocytes (P < 0.01) and omental mast cell counts (P < 0.05), accompanied by the induction of inflammation markers monocyte chemoattractant protein-1 (MCP-1) (P < 0.01) and hyaluronan (P < 0.01) in the transplanted peritonitis group, but not in rats with peritonitis without mesothelial cell transplantation or in control rats without mesothelial cell transplantation (all four parameters P < 0.01). In addition, trapping of transplanted mesothelial cells in the milky spots of omental tissue and lymphatic stomata of the diaphragm both in control and thioglycollate rats seems to increase microvascular permeability, reflected by apparent increased diffusion rates of small solutes and proteins. CONCLUSION: Altogether, our data underscore the importance of controlling peritoneal (patho)physiology and function in mesothelial transplantation protocols.


Subject(s)
Epithelial Cells/transplantation , Peritoneum/cytology , Peritoneum/immunology , Peritonitis/therapy , Animals , Cells, Cultured , Epithelial Cells/cytology , Epithelium , Lymphocytes/immunology , Male , Mast Cells/immunology , Omentum/cytology , Omentum/immunology , Peritonitis/chemically induced , Peritonitis/immunology , Rats , Rats, Wistar , Thioglycolates
15.
Nephrol Dial Transplant ; 20(12): 2783-92, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16204296

ABSTRACT

BACKGROUND: The formation of glucose degradation products (GDPs) and accumulation of advanced glycation end products (AGEs) partly contribute to the bioincompatibility of peritoneal dialysis fluids (PDF). Aminoguanidine (AG) scavenges GDPs and prevents the formation of AGEs. METHODS: In a peritoneal dialysis (PD) rat model, we evaluated the effects of the addition of AG to the PDF on microcirculation and morphology of the peritoneum, by intravital microscopy and quantitative morphometric analysis. RESULTS: AG-bicarbonate effectively scavenged different GDPs from PDF. Daily exposure to PDF for 5 weeks resulted in a significant increase in leucocyte rolling in mesenteric venules, which could be reduced for approximately 50% by addition of AG-bicarbonate (P<0.02). Vascular leakage was found in rats treated with PDF/AG-bicarbonate, but not with PDF alone. Evaluation of visceral and parietal peritoneum showed the induction of angiogenesis and fibrosis after PDF instillation. PDF/AG-bicarbonate significantly reduced vessel density in omentum and parietal peritoneum (P<0.04), but not in mesentery. PDF-induced fibrosis was significantly reduced by AG (P<0.02). PDF instillation led to AGE accumulation in mesentery, which was inhibited by supplementation of AG. Since addition of AG-bicarbonate to PDF raised pH from 5.2 to 8.5, a similar experiment was performed with AG-hydrochloride that did not change the fluid acidity. We could reproduce most of the results obtained with AG-bicarbonate; however, AG-hydrochloride induced no microvascular leakage and had a minor effect on angiogenesis. CONCLUSION: The supplementation of either AG reduced a number of PDF-induced alterations in our model, emphasizing the involvement of GDPs and/or AGEs in the PDF-induced peritoneal injury.


Subject(s)
Dialysis Solutions/pharmacology , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Peritoneal Dialysis , Peritoneal Diseases/prevention & control , Peritoneum/blood supply , Animals , Disease Models, Animal , Fibrosis/etiology , Fibrosis/pathology , Fibrosis/prevention & control , Glycation End Products, Advanced/antagonists & inhibitors , Male , Microcirculation/drug effects , Microscopy, Electron , Neovascularization, Pathologic/prevention & control , Oxidative Stress/drug effects , Peritoneal Dialysis/adverse effects , Peritoneal Dialysis/methods , Peritoneal Diseases/etiology , Peritoneal Diseases/metabolism , Peritoneum/ultrastructure , Rats , Rats, Wistar
16.
Nephrol Dial Transplant ; 20(7): 1350-61, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15840671

ABSTRACT

BACKGROUND: Peritoneal dialysis (PD) is a treatment modality for patients with renal failure. Both the uraemic state of these patients and chronic exposure to PD fluid are associated with the development of functional and structural alterations of the peritoneal membrane. In a well-established chronic PD rat model, we compared rats with normal renal function with subtotal nephrectomized rats that developed uraemia. METHODS: Uraemic and control rats received daily 10 ml conventional glucose containing PD fluid, via peritoneal catheters during a 6 week period. Uraemic and control rats receiving no PD fluid served as controls. Parameters relevant for peritoneal defence and serosal healing responses were analyzed. RESULTS: Uraemic animals were characterized by 2-3-fold increased serum urea and creatinine levels, accompanied by a significantly reduced haematocrit. Uraemia (without PD fluid exposure) induced new blood vessels in different peritoneal tissues, accompanied by increased accumulation of advanced glycation end products (AGEs) and elevated levels of angiogenic factors such as vascular endothelial growth factor and monocyte chemoattractant protein-1 (MCP-1) in peritoneal lavage fluid. A much stronger peritoneal response was observed upon PD fluid exposure in non-uraemic rats. This included the induction of angiogenesis and fibrosis in various peritoneal tissues, accumulation of AGEs, immunological activation of the omentum, damage to the mesothelial cell layer, focal formation of granulation tissues and increased MCP-1 and hyaluronan levels in peritoneal lavage fluid. Finally, chronic PD fluid instillation in uraemic rats did not induce an additional peritoneal response compared to PD fluid exposure in non-uraemic rats, except for the degree of AGE accumulation. CONCLUSIONS: Both uraemia and PD fluid exposure result in pathological alterations of the peritoneum. However, uraemia did not induce major additive effects to PD fluid-induced injury. These results substantially contribute to the understanding of the pathobiology of the peritoneum under PD conditions.


Subject(s)
Dialysis Solutions/pharmacology , Peritoneal Dialysis , Peritoneum/drug effects , Uremia/immunology , Uremia/pathology , Animals , Disease Models, Animal , Epithelium/drug effects , Glycation End Products, Advanced/metabolism , Inflammation Mediators/metabolism , Leukocytes/drug effects , Male , Neovascularization, Physiologic/drug effects , Nephrectomy , Peritoneum/metabolism , Peritoneum/pathology , Rats , Rats, Wistar , Uremia/metabolism
17.
Perit Dial Int ; 25(1): 58-67, 2005.
Article in English | MEDLINE | ID: mdl-15770927

ABSTRACT

BACKGROUND: Glucose-containing peritoneal dialysis fluids (PDF) show impaired biocompatibility, which is related partly to their high glucose content, presence of glucose degradation products, low pH, and lactate buffer, or a combination of these factors. In a rat chronic peritoneal exposure model, we compared effects of an amino acid-based PDF (AA-PDF) with a glucose-containing PDF on the peritoneal microcirculation and morphology. METHOD: Two groups of rats received 10 mL of either fluid daily for 5 weeks via peritoneal catheters connected to implanted subcutaneous mini vascular access ports. Leukocyte-endothelium interactions in the mesenteric venules were investigated by intravital microscopy. Quantification of angiogenesis and fibrosis and inspection of the mesothelial cell layer were performed by light and electron microscopy. RESULTS: Daily exposure to glucose-containing PDF resulted in a significant increase in the number of rolling leukocytes in mesenteric venules, whereas instillation of AA-PDF did not change the level of leukocyte rolling. Glucose-containing PDF evoked a significantly higher number of milky spots in the omentum, whereas this response was significantly reduced in animals exposed to the AA-PDF (p < 0.02). Chronic instillation of glucose-containing PDF induced angiogenesis in various peritoneal tissues, accompanied by fibrosis in the mesentery and parietal peritoneum. Quantitative morphometric evaluation of omentum and mesentery showed a clear trend toward less angiogenesis after treatment with the AA-PDF compared to the glucose-containing PDF, which reached statistical significance in the parietal peritoneum (p < 0.04). Instillation of AA-PDF resulted in approximately 50% reduction of fibrosis in the mesentery (p < 0.04) and approximately 25% reduction in the parietal peritoneum (p < 0.009) compared to glucose-containing PDF. Glucose-containing PDF damaged the mesothelial cell layer, whereas the mesotheium was intact after AA-PDF treatment, as evidenced by electron microscopy. CONCLUSION: Our data in a rat chronic peritoneal exposure model clearly demonstrate reduced immune activation (evidenced by decreased number of rolling leukocytes and decreased induction of omental milky spots) and reduced neoangiogenesis, fibrosis, and mesothelial damage of the peritoneal membrane after treatment with AA-PDF compared to glucose-containing PDF.


Subject(s)
Amino Acids/pharmacology , Dialysis Solutions/pharmacology , Peritoneal Dialysis , Peritoneum/drug effects , Amino Acids/chemistry , Animals , Dialysis Solutions/chemistry , Epithelium/drug effects , Fibrosis , Male , Microcirculation/drug effects , Neovascularization, Pathologic/chemically induced , Peritoneum/blood supply , Peritoneum/pathology , Rats , Rats, Wistar , Time Factors
18.
Nephrol Dial Transplant ; 19(4): 831-9, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15031337

ABSTRACT

BACKGROUND: Recurrent infections in peritoneal dialysis (PD) patients may alter the abdominal wall resulting in an impairment of its dialysis capacity. In this study we investigated both in vitro and in vivo the effects of mesothelial exposure to dialysis fluids on the migration of neutrophils and their capacity to clear a bacterial infection. METHODS: First, we evaluated neutrophil migration in an in vitro transwell model for the peritoneal membrane with monolayers of primary human mesothelial cells (MC) on the lower side and primary human endothelial cells (EC) on top of the same transwell membrane, upon exposure of MC to PD fluid (PDF)-derived components. In addition to this in vitro model, we combined chronic peritoneal exposure to PDF with a peritoneal infection model in the rat. We investigated the kinetics of the chemokine response, neutrophil recruitment and bacterial clearance. RESULTS: Known chemoattractants, such as fMLP and IL-8, strongly increased neutrophil migration across both cell layers in the in vitro model of the peritoneal membrane. Pre-incubation of the MC layer for 48 h with 55 mM glucose, a combination of two glucose degradation products, methylglyoxal and 3-deoxyglucosone, or conventional dialysis fluid (1:4 dilution), however, did not change the IL-8-induced migration of neutrophils. In concert with this finding we demonstrated an unchanged MC expression of ICAM-1 and VCAM-1 after these pre-treatments. Unexpectedly, chronic i.p. exposure to conventional PDF or a recently developed lactate/bicarbonate-buffered PDF in a rat peritoneal exposure model strongly hampered the chemokine response upon bacterial challenge. Nevertheless, neutrophil recruitment and bacterial clearance were effective and did not differ from rats not pre-exposed to PDF. CONCLUSIONS: We conclude that exposure of MC to PDF does not hamper the recruitment of functional neutrophils upon challenge.


Subject(s)
Disease Models, Animal , Neutrophils/physiology , Peritoneal Dialysis , Peritonitis/immunology , Peritonitis/microbiology , Body Fluids , Cell Movement , Cells, Cultured , Epithelial Cells , Escherichia coli Infections/microbiology , Humans , Peritoneum/cytology , Peritoneum/microbiology , Staphylococcal Infections/microbiology
19.
Nephrol Dial Transplant ; 18(12): 2629-37, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14605288

ABSTRACT

BACKGROUND: Long-term peritoneal dialysis (PD) is associated with the development of functional and structural alterations of the peritoneal membrane. In this study, we investigated the contribution of low pH lactate buffer, high glucose concentration and glucose degradation products to peritoneal injury in a rat peritoneal exposure model. METHODS: Rats received daily 10 ml of either heat-sterilized (3.86% glucose, pH 5.2, n = 8) or filter-sterilized PD fluid (3.86% glucose, pH 5.2, n = 8), or lactate buffer (pH 5.2, n = 8) via a mini vascular access port during a 10 week period. Untreated rats served as controls. RESULTS: The low pH lactate buffer instillation induced pronounced morphological changes including the induction of angiogenesis in various peritoneal tissues and mild damage to the mesothelial cell layer covering the peritoneum. It also evoked a cellular response characterized by an increased mesothelial cell density on the liver, the induction of milky spots and accumulation of omental mast cells in the omentum, and significant changes in the composition of peritoneal leukocytes. The addition of glucose to low pH lactate buffer (filter-sterilized PD fluid) strengthened most, but not all of the responses described above and induced a fibrogenic response. In addition to glucose and low pH lactate buffer, the presence of glucose degradation products (heat-sterilized PD fluid) significantly induced an additional omental milky spot response (P < 0.03) and caused profound mesothelial damage. The vessel density in the omentum and the mesentery was significantly correlated to both the number of tissue mast cells and the hyaluronan content in the peritoneal lavage, which might suggest a role for mast cells and hyaluronan in the induction of angiogenesis. CONCLUSIONS: Instillations of low pH lactate buffer, a high glucose concentration and glucose degradation products contribute differently and often cumulatively to peritoneal injury in vivo.


Subject(s)
Dialysis Solutions/adverse effects , Glucose/adverse effects , Lactic Acid/adverse effects , Peritoneal Dialysis, Continuous Ambulatory/adverse effects , Peritoneal Diseases/pathology , Animals , Buffers , Glycation End Products, Advanced , Hydrogen-Ion Concentration , Male , Models, Animal , Omentum/pathology , Peritoneal Dialysis, Continuous Ambulatory/methods , Peritoneal Diseases/etiology , Peritoneum/pathology , Rats , Rats, Wistar
20.
Perit Dial Int ; 23(4): 323-30, 2003.
Article in English | MEDLINE | ID: mdl-12968839

ABSTRACT

OBJECTIVES: Mesothelial cell (MC) injury caused by continuous exposure to unphysiological peritoneal dialysis (PD) fluid and by episodes of peritonitis can eventually lead to peritoneal adhesions and peritoneal fibrosis. In the present study, we evaluated the possibility of using autologous genetically modified MCs for transplantation after the induction of peritoneal injury by acute inflammatory mediators or chronic instillation of PD fluid. METHODS: Rats were injected intraperitoneally either once with N-formyl-methionyl-leucyl-phenylalanine (fMLP), or thioglycollate, or PD fluid [i.e., Dianeal (Baxter Healthcare, Deerfield, Illinois, USA) or Physioneal (Baxter, Nivelles, Belgium)], or chronically (up to 8 weeks) with Dianeal. From 2 to 48 hours later, animals were injected with syngeneic MCs genetically modified to express the LacZ reporter gene. Rats were sacrificed 2 days later and expression of beta-galactosidase (beta-Gal) was visualized by X-Gal staining of excised tissues. Quantification of the percent area of beta-Gal-positive MCs on part of the parietal peritoneum was performed using computerized image analysis. RESULTS: The highest numbers of repopulated genetically modified MCs were observed 8 hours after a single thioglycollate injection, approximately 0.66% of a representative 2-cm2 area selected for study (corresponding to approximately 10% of the peritoneal surface). The number of genetically modified MCs found to repopulate the peritoneal surface following short-term injury varied with inflammatory mediator (thioglycollate > PD fluid > fMLP) and duration of exposure. No obvious differences were observed between the two PD fluids tested. Reimplantation of syngeneic genetically modified MCs was also observed after chronic instillation of PD fluid. CONCLUSIONS: These data demonstrate that transplanted genetically modified MCs repopulate the denuded areas on the peritoneal surface that were caused by acute or chronic inflammation. This technique opens possibilities of MC transplantation and gene therapy in order to prevent complications relevant to the continuous ambulatory PD setting.


Subject(s)
Cell Transplantation/methods , Dialysis Solutions/adverse effects , Epithelial Cells/transplantation , Epithelium/transplantation , Inflammation/complications , Peritoneal Dialysis/adverse effects , Peritonitis/etiology , Acute Disease , Animals , Female , Genetic Therapy/methods , Kidney Failure, Chronic/therapy , Models, Animal , Peritoneum/injuries , Peritonitis/chemically induced , Peritonitis/immunology , Rats , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL
...