Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Endocr Soc ; 8(5): bvae040, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38505563

ABSTRACT

Although most pituitary neuroendocrine tumors (PitNETs)/pituitary adenomas remain intrasellar, a significant proportion of tumors show parasellar invasive growth and 6% to 8% infiltrate the bone structures, thus affecting the prognosis. There is an unmet need to identify novel markers that can predict the parasellar growth of PitNETs. Furthermore, mechanisms that regulate bone invasiveness of PitNETs and factors related to tumor vascularization are largely unknown. We used genome-wide mRNA analysis in a cohort of 77 patients with PitNETs of different types to explore the differences in gene expression patterns between invasive and noninvasive tumors with respect to the parasellar growth and regarding the rare phenomenon of bone invasiveness. Additionally, we studied the genes correlated to the contrast enhancement quotient, a novel radiological parameter of tumor vascularization. Most of the genes differentially expressed related to the parasellar growth were genes involved in tumor invasiveness. Differentially expressed genes associated with bone invasiveness are involved in NF-κB pathway and antitumoral immune response. Lack of clear clustering regarding the parasellar and bone invasiveness may be explained by the influence of the cell lineage-related genes in this heterogeneous cohort of PitNETs. Our transcriptomics analysis revealed differences in the molecular fingerprints between invasive, including bone invasive, and noninvasive PitNETs, although without clear clustering. The contrast enhancement quotient emerged as a radiological parameter of tumor vascularization, correlating with several angiogenesis-related genes. Several of the top genes related to the PitNET invasiveness and vascularization have potential prognostic and therapeutic application requiring further research.

2.
Neuro Oncol ; 24(5): 726-738, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34919147

ABSTRACT

BACKGROUND: Patient-derived xenograft (PDX) models of glioblastoma (GBM) are a central tool for neuro-oncology research and drug development, enabling the detection of patient-specific differences in growth, and in vivo drug response. However, existing PDX models are not well suited for large-scale or automated studies. Thus, here, we investigate if a fast zebrafish-based PDX model, supported by longitudinal, AI-driven image analysis, can recapitulate key aspects of glioblastoma growth and enable case-comparative drug testing. METHODS: We engrafted 11 GFP-tagged patient-derived GBM IDH wild-type cell cultures (PDCs) into 1-day-old zebrafish embryos, and monitored fish with 96-well live microscopy and convolutional neural network analysis. Using light-sheet imaging of whole embryos, we analyzed further the invasive growth of tumor cells. RESULTS: Our pipeline enables automatic and robust longitudinal observation of tumor growth and survival of individual fish. The 11 PDCs expressed growth, invasion and survival heterogeneity, and tumor initiation correlated strongly with matched mouse PDX counterparts (Spearman R = 0.89, p < 0.001). Three PDCs showed a high degree of association between grafted tumor cells and host blood vessels, suggesting a perivascular invasion phenotype. In vivo evaluation of the drug marizomib, currently in clinical trials for GBM, showed an effect on fish survival corresponding to PDC in vitro and in vivo marizomib sensitivity. CONCLUSIONS: Zebrafish xenografts of GBM, monitored by AI methods in an automated process, present a scalable alternative to mouse xenograft models for the study of glioblastoma tumor initiation, growth, and invasion, applicable to patient-specific drug evaluation.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Glioblastoma/pathology , Heterografts , Humans , Xenograft Model Antitumor Assays , Zebrafish
3.
Acta Neuropathol Commun ; 9(1): 181, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34758873

ABSTRACT

Pituitary neuroendocrine tumors (PitNETs) are common, generally benign tumors with complex clinical characteristics related to hormone hypersecretion and/or growing sellar tumor mass. PitNETs can be classified based on the expression pattern of anterior pituitary hormones and three main transcriptions factors (TF), SF1, PIT1 and TPIT that regulate differentiation of adenohypophysial cells. Here, we have extended this classification based on the global transcriptomics landscape using tumor tissue from a well-defined cohort comprising 51 PitNETs of different clinical and histological types. The molecular profiles were compared with current classification schemes based on immunohistochemistry. Our results identified three main clusters of PitNETs that were aligned with the main pituitary TFs expression patterns. Our analyses enabled further identification of specific genes and expression patterns, including both known and unknown genes, that could distinguish the three different classes of PitNETs. We conclude that the current classification of PitNETs based on the expression of SF1, PIT1 and TPIT reflects three distinct subtypes of PitNETs with different underlying biology and partly independent from the expression of corresponding hormones. The transcriptomic analysis reveals several potentially targetable tumor-driving genes with previously unknown role in pituitary tumorigenesis.


Subject(s)
Adenoma/genetics , Genome-Wide Association Study , Neuroendocrine Tumors/genetics , Pituitary Neoplasms/genetics , Adenoma/metabolism , Gene Expression Profiling , Humans , Immunohistochemistry , Neuroendocrine Tumors/metabolism , Pituitary Gland, Anterior/metabolism , Pituitary Hormones, Anterior/metabolism , Pituitary Neoplasms/metabolism , Transcriptome
4.
Nat Commun ; 11(1): 71, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31900415

ABSTRACT

Despite advances in the molecular exploration of paediatric cancers, approximately 50% of children with high-risk neuroblastoma lack effective treatment. To identify therapeutic options for this group of high-risk patients, we combine predictive data mining with experimental evaluation in patient-derived xenograft cells. Our proposed algorithm, TargetTranslator, integrates data from tumour biobanks, pharmacological databases, and cellular networks to predict how targeted interventions affect mRNA signatures associated with high patient risk or disease processes. We find more than 80 targets to be associated with neuroblastoma risk and differentiation signatures. Selected targets are evaluated in cell lines derived from high-risk patients to demonstrate reversal of risk signatures and malignant phenotypes. Using neuroblastoma xenograft models, we establish CNR2 and MAPK8 as promising candidates for the treatment of high-risk neuroblastoma. We expect that our method, available as a public tool (targettranslator.org), will enhance and expedite the discovery of risk-associated targets for paediatric and adult cancers.


Subject(s)
Antineoplastic Agents/administration & dosage , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Animals , Cell Line, Tumor , Drug Evaluation, Preclinical , Female , Humans , Male , Mice , Mice, Nude , Mitogen-Activated Protein Kinase 8/antagonists & inhibitors , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 8/metabolism , Neuroblastoma/metabolism , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Xenograft Model Antitumor Assays , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...