Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Biotechnol ; 16(4): 434-9, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15950452

ABSTRACT

Hydrophobins are self-assembling proteins of fungal origin. Their ability to self-assemble into an amphipathic membrane is of interest for many different applications, ranging from medical and technical coatings to the production of proteinaceous glue and cosmetics. Assembled hydrophobins can modify surface characteristics, thus controling the binding properties of the surface; for example, enzymes can be actively and non-covalently immobilized on electrode surfaces and medical coatings can be improved for biocompatibility. Over the past few years research on hydrophobins has contributed to a better understanding of the self-assembly process and is generating more handles to control and manipulate the process. This knowledge could have an immediate effect on production levels, which are not yet adequate, and provide the boost needed for hydrophobins to reach their full potential.


Subject(s)
Biocompatible Materials , Fungal Proteins/physiology , Fungal Proteins/chemistry , Fungal Proteins/genetics , Hydrophobic and Hydrophilic Interactions , Schizophyllum/chemistry , Schizophyllum/physiology , Trichoderma/chemistry , Trichoderma/physiology
2.
Arch Microbiol ; 182(1): 18-29, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15316720

ABSTRACT

Chemoautotrophic endosymbionts residing in Solemya velum gills provide this shallow water clam with most of its nutritional requirements. The cbb gene cluster of the S. velum symbiont, including cbbL and cbbS, which encode the large and small subunits of the carbon-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), was cloned and expressed in Escherichia coli. The recombinant RubisCO had a high specific activity, approximately 3 micromol min(-1) mg protein (-1), and a KCO2 of 40.3 microM. Based on sequence identity and phylogenetic analyses, these genes encode a form IA RubisCO, both subunits of which are closely related to those of the symbiont of the deep-sea hydrothermal vent gastropod Alviniconcha hessleri and the photosynthetic bacterium Allochromatium vinosum. In the cbb gene cluster of the S. velum symbiont, the cbbLS genes were followed by cbbQ and cbbO, which are found in some but not all cbb gene clusters and whose products are implicated in enhancing RubisCO activity post-translationally. cbbQ shares sequence similarity with nirQ and norQ, found in denitrification clusters of Pseudomonas stutzeri and Paracoccus denitrificans. The 3' region of cbbO from the S. velum symbiont, like that of the three other known cbbO genes, shares similarity to the 3' region of norD in the denitrification cluster. This is the first study to explore the cbb gene structure for a chemoautotrophic endosymbiont, which is critical both as an initial step in evaluating cbb operon structure in chemoautotrophic endosymbionts and in understanding the patterns and forces governing RubisCO evolution and physiology.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Mollusca/microbiology , Ribulose-Bisphosphate Carboxylase/metabolism , Symbiosis , Animals , Bacteria/genetics , Bacterial Proteins/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Multigene Family , Ribulose-Bisphosphate Carboxylase/genetics
3.
J Biol Chem ; 277(49): 46966-73, 2002 Dec 06.
Article in English | MEDLINE | ID: mdl-12351635

ABSTRACT

The Bacillus methanolicus methanol dehydrogenase (MDH) is a decameric nicotinoprotein alcohol dehydrogenase (family III) with one Zn(2+) ion, one or two Mg(2+) ions, and a tightly bound cofactor NAD(H) per subunit. The Mg(2+) ions are essential for binding of cofactor NAD(H) in MDH. A B. methanolicus activator protein strongly stimulates the relatively low coenzyme NAD(+)-dependent MDH activity, involving hydrolytic removal of the NMN(H) moiety of cofactor NAD(H) (Kloosterman, H., Vrijbloed, J. W., and Dijkhuizen, L. (2002) J. Biol. Chem. 277, 34785-34792). Members of family III of NAD(P)-dependent alcohol dehydrogenases contain three unique, conserved sequence motifs (domains A, B, and C). Domain C is thought to be involved in metal binding, whereas the functions of domains A and B are still unknown. This paper provides evidence that domain A constitutes (part of) a new magnesium-dependent NAD(P)(H)-binding domain. Site-directed mutants D100N and K103R lacked (most of the) bound cofactor NAD(H) and had lost all coenzyme NAD(+)-dependent MDH activity. Also mutants G95A and S97G were both impaired in cofactor NAD(H) binding but retained coenzyme NAD(+)-dependent MDH activity. Mutant G95A displayed a rather low MDH activity, whereas mutant S97G was insensitive to activator protein but displayed "fully activated" MDH reaction rates. The various roles of these amino acid residues in coenzyme and/or cofactor NAD(H) binding in MDH are discussed.


Subject(s)
Alcohol Oxidoreductases/chemistry , Bacillus/enzymology , NADP/chemistry , Alcohol Oxidoreductases/metabolism , Amino Acid Sequence , Base Sequence , Binding Sites , Chromatography, Ion Exchange , Escherichia coli/metabolism , Kinetics , Models, Chemical , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , NADP/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Time Factors , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...