Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Scand J Pain ; 20(1): 61-68, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31536037

ABSTRACT

Background and aims Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal - dominant hereditary neuropathy caused by a deficiency in the peripheral protein PMP-22, due to deletion on chromosome 17p11,2 or in some rare cases point mutations in the PMP-22 gene. The clinical picture is characterized by recurrent mononeuropathies in nerves which frequently may be exposed to pressure, such as the median, ulnar, radial and peroneal nerves or also a more general neuropathy. Although pain is reported to be an unusual clinical symptom, there have been reports of pain in a surprisingly high proportion of these patients. Since pain may be explained by mechanisms in afferent small unmyelinated C- nerve fibers, an assessment of the function of small nerve fibers has been requested. The purpose of the present study was to investigate the presence of pain and the possible affection of afferent small nerve-fibers, A-δ and C-fibers, by quantitative sensory testing (QST)-assessment of thermal thresholds, as well as quantitative sudomotor axon reflex (QSART), a quantitative, validated assessment of efferent postganglionic sumodotor function. QST values were compared to values of age- and sex matched healthy subjects. Methods The 19 patients were investigated clinically, with an emphasis on pain characteristics, with nerve conduction studies (NCS) of major nerves in upper- and lower extremity, small fiber testing (QST, measurement of thermal thresholds) and with QSART. Results A total of 10 patients reported numbness in some extremity, suggesting entrapment of individual nerves as well as a general neuropathy, as verified by NCS in nine patients. A total of 15 patients had findings compatible with a general polyneuropathy. A total of eight patients reported pain, seven patients with pain in the feet, described as burning, aching, shooting and six with severe pathological QST values, mainly cold detection, but also four patients with elevated thresholds to warmth. Four of the patients had signs of a severe sensory neuropathy on NCS, with no sural findings. One patient had only pain in the arms, with only minor changes on NCS and with normal QST-values. Cold detection thresholds (CD) were significantly elevated (reduced sensibility) on the dorsum of the foot (mean of two feet), in patients [26.0 °C (19.7-28.0)] as compared with healthy subjects [28.6 °C (27.4-29.6) p = 0.000]. There were also significantly elevated warmth detection thresholds (WD) in feet in patients 39.5 °C (36.4-42.9) compared to healthy subjects [37.7 °C (36.1-39.4) p = 0.048]. However, there were no significant differences in QST values between patients with and without pain. Conclusions Of a total of 19 patients with verified HNPP, eight patients (42.1%) suffered from neuropathic pain, mainly in both feet. Implications Due to the high percentage of pain in HNPP, it is important not to disregard this diagnosis in a patient presenting with pain. Since there are no significant differences in QST values in patients with and without pain, routine QST studies in HNPP do not seem necessary.


Subject(s)
Arthrogryposis/genetics , Hereditary Sensory and Motor Neuropathy/genetics , Myelin Proteins/deficiency , Neural Conduction/physiology , Neuralgia/physiopathology , Neurons, Afferent/physiology , Pain/physiopathology , Adult , Female , Foot , Humans , Hypesthesia/etiology , Male
2.
Brain Behav ; 6(10): e00528, 2016 10.
Article in English | MEDLINE | ID: mdl-27781142

ABSTRACT

INTRODUCTION: The sodium channel Nav 1.9 is expressed in peripheral nociceptors and has recently been linked to human pain conditions, but the exact role of Nav 1.9 for human nociceptor excitability is still unclear. METHODS: C-nociceptors from two patients with late onset of erythromelalgia-like pain, signs of small fiber neuropathy, and rare genetic variants of Nav 1.9 (N1169S, I1293V) were assessed by microneurography. RESULTS: Compared with patients with comparable pain phenotypes (erythromelalgia-like pain without Nav-mutations and painful polyneuropathy), there was a tendency toward more activity-dependent slowing of conduction velocity in mechanoinsensitive C-nociceptors. Hyperexcitability to heating and electrical stimulation were seen in some nociceptors, and other unspecific signs of increased excitability, including spontaneous activity and mechanical sensitization, were also observed. CONCLUSIONS: Although the functional roles of these genetic variants are still unknown, the microneurography findings may be compatible with increased C-nociceptor excitability based on increased Nav 1.9 function.


Subject(s)
Erythromelalgia/genetics , Erythromelalgia/physiopathology , Nociceptors , Female , Humans , Middle Aged , NAV1.9 Voltage-Gated Sodium Channel/genetics , Nociceptors/pathology
3.
Clin J Pain ; 32(7): 636-42, 2016 07.
Article in English | MEDLINE | ID: mdl-27270876

ABSTRACT

OBJECTIVES: Nerve growth factor (NGF) is a protein important for growth and survival, but also for modulation of sensitivity of nociceptors and sympathetic neurons. The purpose of the present study was to investigate the effects of reduced NGF signaling in patients with hereditary sensory and autonomic neuropathies type V, congenital insensitivity to pain, caused by a mutation of the NGFß gene, including a characterization of single nociceptive fibers using microneurography (MNG). MATERIALS AND METHODS: One homozygote and 2 heterozygote patients with this mutation were examined with electromyography/neurography, thermal testing, quantitative sudomotor axon reflex test, and electrically induced axon reflex erythema in addition to MNG. RESULTS: Low quantitative sudomotor axon reflex test measurements of 0.02 (left foot) and 0.03 (right foot) µL/cm and elevated thermal thresholds for warmth and cold detection testing showed clear impairment of small nerve fibers, both sudomotor efferent and somatic afferent fibers, in the patient homozygote for the mutation. MNG from one of the heterozygote patients revealed changes in the small nociceptive fibers in skin, including abnormally low conduction velocity, spontaneous activity in A-δ fibers and C-nociceptors and abnormal or lacking response to heat. DISCUSSION: The findings of grossly intact pain thresholds compared with anamnestic insensitivity of pain in deep somatic tissue such as bone suggest a gradient of impairment dependent on different NGF availability in various tissues. Even though these patients in some aspects report insensitivity to pain, they also report chronic spontaneous pain as their main symptom, strikingly highlighting differential mechanisms of insensitivity to evoked pain versus spontaneous pain.


Subject(s)
Hereditary Sensory and Autonomic Neuropathies/genetics , Hereditary Sensory and Autonomic Neuropathies/physiopathology , Nerve Growth Factor/genetics , Nociceptors/physiology , Pain Insensitivity, Congenital/genetics , Pain Insensitivity, Congenital/physiopathology , Adult , Aged, 80 and over , Female , Heterozygote , Homozygote , Humans , Middle Aged , Mutation , Pain Threshold/physiology , Reflex/genetics , Reflex/physiology
4.
Scand J Pain ; 5(4): 217-225, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-29911575

ABSTRACT

Background and aim "Gain-of-function" mutations in voltage-gated sodium channel NaV1.7 have been linked to erythromelalgia (EM), characterized by painful hot and red hands and feet. We investigated the proportion of patients with EM that carry a mutation in NaV1.7 or in other pain-related genes and studied possible clinical differences. Methods In this study, 48 patients with EM were screened for mutations in a total of 29 candidate genes, including all sodium channel subunits, transient receptor potential channels (TRPA1, TRPV1, TRPM8), neurotrophic factors (NGF, NGFR, BDNF, GDNF, NTRK1 and WNK1) and other known pain-related genes (CACNG2, KCNS1, COMT, P2RX3, TAC1, TACR1), using a combination of next generation sequencing and classical Sanger sequencing. Results In 7/48 patients protein-modifying mutations of NaV1.7 (P187L, I228M, I848T (n = 4) and N1245S) were identified. Patients with the I848T mutation could be identified clinically based on early onset and severity of the disease. In contrast, there were no clinical characteristics that differentiated the other patients with NaV1.7 mutation from those patients without. We also found more than twenty rare protein-modifying genetic variants in the genes coding for sodium channels (NaV1.8, NaV1.9, NaV1.6, NaV1.5, NaV2.1, SCN1B, SCN3B), transient receptor potential channel (TRPA1, TRPV1), and other pain-related targets (WNK1 and NGFR). Conclusion We conclude that functionally characterized mutations of NaV1.7 (I848T) are present only in a minority of patient with EM. Albeit the majority of patients (27/48) carried rare protein-modifying mutations the vast majority of those will most probably not be causally linked to their disease. Implications The key question remaining to be solved is the possible role of rare variants of NaV1.8, NaV1.9, or beta-subunits in provoking chronic pain conditions or even EM.

5.
Pain ; 153(10): 2040-2047, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22986070

ABSTRACT

Polyneuropathy can be linked to chronic pain but also to reduced pain sensitivity. We investigated peripheral C-nociceptors in painful and painless polyneuropathy patients to identify pain-specific changes. Eleven polyneuropathy patients with persistent spontaneous pain and 8 polyneuropathy patients without spontaneous pain were investigated by routine clinical methods. For a specific examination of nociceptor function, action potentials from single C-fibres including 214 C-nociceptors were recorded by microneurography. Patients with and without pain were distinguished by the occurrence of spontaneous activity and mechanical sensitization in C-nociceptors. The mean percentage of C-nociceptors being spontaneously active or mechanically sensitized was significantly higher in patients with pain (mean 40.5% and 14.6%, respectively, P=.02). The difference was mainly due to more spontaneously active mechanoinsensitive C-nociceptors (operationally defined by their mechanical insensitivity and their axonal characteristics) in the pain patients (19 of 56 vs 6 of 43; P=.02). The percentage of sensitized mechanoinsensitive C-nociceptors correlated to the percentage of spontaneously active mechanoinsensitive C-nociceptors (Kendall's tau=.55, P=.004). Moreover, spontaneous activity of mechanoinsensitive C-nociceptors correlated to less pronounced activity-dependent slowing of conduction (Kendall's tau=-.48, P=.009), suggesting that axons were included in the sensitization process. Hyperexcitability in mechanoinsensitive C-nociceptors was significantly higher in patients with polyneuropathy and pain compared to patients with polyneuropathy without pain, while the difference was much less prominent in mechanosensitive (polymodal) C-nociceptors. This hyperexcitability may be a major underlying mechanism for the pain experienced by patients with painful peripheral neuropathy.


Subject(s)
Action Potentials , Biological Clocks , Neuralgia/complications , Neuralgia/physiopathology , Nociceptors , Polyneuropathies/complications , Polyneuropathies/physiopathology , Adult , Aged , Female , Humans , Male , Middle Aged
6.
Pain ; 153(2): 391-398, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22154219

ABSTRACT

Multiple firing of C nociceptors upon a single electrical stimulus has been suggested to be a possible mechanism contributing to neuropathic pain. Because this phenomenon maybe based on a unidirectional conduction block, it might also be related to neuropathic changes without a direct link to pain. We investigated painful neuropathy patients using microneurography and analysed nociceptors for the occurrence of multiple spiking and spontaneous activity. In 11 of 105 nociceptors, double spiking was found, with 1 fibre even showing triple spikes on electrical stimulation. The interval between the main action potential and the multiple spikes ranged from 13 to 100 ms. There was a significant association between spontaneous activity and multiple spiking in C nociceptors, with spontaneous activity being present in 9 of 11 fibres with multiple spiking, but only in 21 of 94 nociceptors without multiple spiking (P<.005, Fisher exact test). Among the 75 C nociceptors without spontaneous activity, only 2 nociceptors showed multiple spiking. In 8 neuropathy patients without pain, double spiking was found only in 4 of 90 nociceptors. Multiple spiking of nociceptors coincides with spontaneous activity in nociceptors of painful neuropathy patients. We therefore conclude that rather than being a generic sign of neuropathy, multiple spiking is linked to axonal hyperexcitability and spontaneous activity of nociceptors. It is still unclear whether it also is mechanistically related to the clinical pain level.


Subject(s)
Action Potentials/physiology , Electric Stimulation/methods , Neuralgia/physiopathology , Nociceptors/physiology , Peripheral Nerves/physiopathology , Peripheral Nervous System Diseases/physiopathology , Adult , Aged , Electrodiagnosis/methods , Female , Humans , Male , Middle Aged , Nerve Fibers, Unmyelinated/physiology , Neuralgia/diagnosis , Peripheral Nervous System Diseases/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...