Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Physiol ; 124(2): 115-24, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15277573

ABSTRACT

Chemotaxis of sperm is an important step toward fertilization. During chemotaxis, sperm change their swimming behavior in a gradient of the chemoattractant that is released by the eggs, and finally sperm accumulate near the eggs. A well established model to study chemotaxis is the sea urchin Arbacia punctulata. Resact, the chemoattractant of Arbacia, is a peptide that binds to a receptor guanylyl cyclase. The signaling pathway underlying chemotaxis is still poorly understood. Stimulation of sperm with resact induces a variety of cellular events, including a rise in intracellular pH (pHi) and an influx of Ca2+; the Ca2+ entry is essential for the chemotactic behavior. Previous studies proposed that the influx of Ca2+ is initiated by the rise in pHi. According to this proposal, a cGMP-induced hyperpolarization activates a voltage-dependent Na+/H+ exchanger that expels H+ from the cell. Because some aspects of the proposed signaling pathway are inconsistent with recent results (Kaupp, U.B., J. Solzin, J.E. Brown, A. Helbig, V. Hagen, M. Beyermann, E. Hildebrand, and I. Weyand. 2003. Nat. Cell Biol. 5:109-117), we reexamined the role of protons in chemotaxis of sperm using kinetic measurements of the changes in pHi and intracellular Ca2+ concentration. We show that for physiological concentrations of resact (<25 pM), the influx of Ca2+ precedes the rise in pHi. Moreover, buffering of pHi completely abolishes the resact-induced pHi signal, but leaves the Ca2+ signal and the chemotactic motor response unaffected. We conclude that an elevation of pHi is required neither to open Ca(2+)-permeable channels nor to control the chemotactic behavior. Intracellular release of cGMP from a caged compound does not cause an increase in pHi, indicating that the rise in pHi is induced by cellular events unrelated to cGMP itself, but probably triggered by the consumption and subsequent replenishment of GTP. These results show that the resact-induced rise in pHi is not an obligatory step in sperm chemotactic signaling. A rise in pHi is also not required for peptide-induced Ca2+ entry into sperm of the sea urchin Strongylocentrotus purpuratus. Speract, a peptide of S. purpuratus may act as a chemoattractant as well or may serve functions other than chemotaxis.


Subject(s)
Calcium Signaling/physiology , Chemotaxis/physiology , Protons , Spermatozoa/physiology , Animals , Arbacia , Hydrogen-Ion Concentration , Male , Sea Urchins , Strongylocentrotus purpuratus
2.
Dev Biol ; 260(2): 314-24, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-12921734

ABSTRACT

Peptides released from eggs of marine invertebrates play a central role in fertilization. About 80 different peptides from various phyla have been isolated, however, with one exception, their respective receptors on the sperm surface have not been unequivocally identified and the pertinent signaling pathways remain ill defined. Using rapid mixing techniques and novel membrane-permeable caged compounds of cyclic nucleotides, we show that the sperm-activating peptide asterosap evokes a fast and transient increase of the cGMP concentration in sperm of the starfish Asterias amurensis, followed by a transient cGMP-stimulated increase in the Ca(2+) concentration. In contrast, cAMP levels did not change significantly and the Ca(2+) response evoked by photolysis of caged cAMP was significantly smaller than that using caged cGMP. By cloning of cDNA and chemical crosslinking, we identified a receptor-type guanylyl cyclase in the sperm flagellum as the asterosap-binding protein. Sperm respond exquisitely sensitive to picomolar concentrations of asterosap, suggesting that the peptide serves a chemosensory function like resact, a peptide involved in chemotaxis of sperm of the sea urchin Arbacia punctulata. A unifying principle emerges that chemosensory transduction in sperm of marine invertebrates uses cGMP as the primary messenger, although there may be variations in the detail.


Subject(s)
Cyclic GMP/metabolism , Peptides/genetics , Peptides/pharmacology , Signal Transduction/physiology , Spermatozoa/metabolism , Starfish/metabolism , Amino Acid Sequence , Animals , Calcium/metabolism , Cloning, Molecular , DNA, Complementary , Guanylate Cyclase/drug effects , Guanylate Cyclase/metabolism , Male , Molecular Sequence Data , Peptides/metabolism , Sequence Homology, Amino Acid , Sperm Tail/metabolism , Spermatozoa/drug effects , Testis/physiology
3.
Nat Cell Biol ; 5(2): 109-17, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12563276

ABSTRACT

The signalling pathway and the behavioural strategy underlying chemotaxis of sperm are poorly understood. We have studied the cellular events and motor responses that mediate chemotaxis of sperm from the sea urchin Arbacia punctulata. Here we show that resact, a chemoattractant peptide, initiates a rapid and transient rise in the concentration of cyclic GMP, followed by a transient influx of Ca2+. The binding of a single resact molecule elicits a Ca2+ response, and 50-100 bound molecules saturate the response. The ability to register single molecules is reminiscent of the single-photon sensitivity of rod photoreceptors. Both resact and cyclic nucleotides cause a turn or brief tumbling in the swimming path of sperm. We conclude that a cGMP-mediated increase in the Ca2+ concentration induces the primary motor response of sperm to the chemoattractant.


Subject(s)
Chemotaxis/physiology , Egg Proteins/metabolism , Guanylate Cyclase , Receptors, Cell Surface/metabolism , Sea Urchins/physiology , Signal Transduction/physiology , Spermatozoa/physiology , Animals , Calcium/metabolism , Cyclic AMP/analogs & derivatives , Cyclic AMP/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Male , Molecular Structure , Protein Binding , Sperm Motility , Spermatozoa/cytology , Spermatozoa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...