Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 83(7): 074904, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22852715

ABSTRACT

A measurement setup is presented that allows for a complete and non-destructive material characterization of electrochemically deposited thermoelectric material. All electrical (Seebeck coefficient α, electrical conductivity σ), thermal (thermal conductivity λ), and thermoelectric (figure of merit ZT) material parameters are determined within a single measurement run. The setup is capable of characterizing individual electrochemically deposited Bi(2+x)Te(3-x) pillars of various size and thickness down to a few 10 µm, embedded in a polymer matrix with a maximum measurement area of 1 × 1 cm(2). The temperature range is limited to an application specific window near room temperature of 10 °C to 70 °C. A maximum thermal flux of 1 W/cm(2) can be applied to the device under test (DUT) by the Peltier element driven heat source and sink. The setup has a highly symmetric design and DUTs can be mounted and dismounted within few seconds. A novel in situ recalibration method for a simple, quick and more accurate calibration of all sensors has been developed. Thermal losses within the setup are analysed and are mathematically considered for each measurement. All random and systematic errors are encountered for by a MATLAB routine, calculating all the target parameters and their uncertainties. The setup provides a measurement accuracy of ±2.34 µV/K for α, ±810.16 S/m for σ, ±0.13 W/mK for λ, and ±0.0075 for ZT at a mean temperature of 42.5 °C for the specifically designed test samples with a pillar diameter of 696 µm and thickness of 134 µm, embedded in a polyethylene terephthalate polymer matrix.

2.
Nat Nanotechnol ; 5(8): 589-92, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20601944

ABSTRACT

Single-walled carbon nanotubes offer high sensitivity and very low power consumption when used as field-effect transistors in nanosensors. Suspending nanotubes between pairs of contacts, rather than attaching them to a surface, has many advantages in chemical, optical or displacement sensing applications, as well as for resonant electromechanical systems. Suspended nanotubes can be integrated into devices after nanotube growth, but contamination caused by the accompanying additional process steps can change device properties. Ultraclean suspended nanotubes can also be grown between existing device contacts, but high growth temperatures limit the choice of metals that can be used as contacts. Moreover, when operated in ambient conditions, devices fabricated by either the post- or pre-growth approach typically exhibit gate hysteresis, which makes device behaviour less reproducible. Here, we report the operation of nanotube transistors in a humid atmosphere without hysteresis. Suspended, individual and ultraclean nanotubes are grown directly between unmetallized device contacts, onto which palladium is then evaporated through self-aligned on-chip shadow masks. This yields pairs of needle-shaped source/drain contacts that have been theoretically shown to allow high nanotube-gate coupling and low gate voltages. This process paves the way for creating ultrasensitive nanosensors based on pristine suspended nanotubes.


Subject(s)
Crystallization/methods , Microelectrodes , Models, Theoretical , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/instrumentation , Transistors, Electronic , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nonlinear Dynamics , Particle Size , Surface Properties
3.
Nanotechnology ; 21(18): 185501, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20388980

ABSTRACT

Carbon-nanotube-based field effect transistors (CNFETs) have been employed as highly sensitive chemical sensors. Often used as the sensor output signal, the gate threshold voltage (V(th)) is subject to concentration-dependent shifts upon exposure to target analytes. However, an unambiguous determination of the intrinsic V(th) is usually hampered by substantial hysteresis in CNFET gate characteristics. In this study we show that short gate voltage (V(gd)) pulses can be used for hysteresis reduction in CNFETs as chemical sensors, in particular for NO(2) detection. In the pulsed operation regime, even small shifts of V(th) upon sub-ppm NO(2) exposure remain resolvable. Furthermore, the hysteretic behaviour is systematically investigated by varying the pulse waveforms and timing parameters. Finally, we use an adapted hysteresis model for pulsed V(gd) and employ it to discuss the measurement data.


Subject(s)
Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nitrogen Dioxide/analysis , Electrochemistry , Environmental Monitoring , Gases/analysis , Models, Theoretical , Transistors, Electronic
4.
Nanotechnology ; 20(43): 434010, 2009 Oct 28.
Article in English | MEDLINE | ID: mdl-19801765

ABSTRACT

Single-walled carbon nanotube field-effect transistors (CNFETs) are promising functional structures in future micro- or nanoelectronic systems and sensor applications. Research on the fundamental device concepts includes the investigation of the conditions for stable long term CNFET operation. CNFET operation in ambient air leads to on-state current degradation and fluctuating signals due to the well-known sensitivity of the electronic properties of the CNT to many environmental condition changes. It is the goal of device and sensor research to understand various kinds of sensor-environment interactions and to overcome the environmental sensitivity. Here, we show that the encapsulation of CNFETs by a thermal atomic-layer-deposited (ALD) aluminium oxide (Al(2)O(3)) layer of approximately 100 nm leads to stable device operation for 260 days and reduces their sensitivity to the environment. The characteristics of CNFETs prior to and after Al(2)O(3) encapsulation are comparatively investigated. It is found that encapsulation improves the stability of the CNFET characteristics with respect to the gate threshold voltage, hysteresis width and the on-state current, while 1/f noise is lowered by up to a factor of 7. Finally, CNFETs embedded in a dielectric membrane are employed as pressure sensors to demonstrate sensor operation of CNFETs encapsulated by ALD as piezoresistive transducers.

5.
Nano Lett ; 7(9): 2747-52, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17718586

ABSTRACT

We discuss the potential use of the electromechanical shuttle instability in suspended nanostructures (e.g., nanotubes or nanowires) for nanomechanical sensing. The tunneling-assisted (shuttle-like) electron transport mechanism is addressed from a mechanical and electromechanical point of view, showing strong dependencies on the fundamental frequency, the mechanical restoring and damping force, and the electromechanical charging of the suspended nanostructure. We propose to use these nonlinear dependencies to sense minute mass (and tension) changes. Therefore, we introduce a conceptual sensing device and investigate its operation in the frame of a simple model system. Finally, we discuss different measurement techniques and report on high sensitivities (e.g., 1 nA/zeptogram (zg), or 1 mV/zg depending on the measurement technique) and potential resolutions in the range of 10 zg (10(-23) kg).


Subject(s)
Electrochemistry/instrumentation , Nanostructures/chemistry , Nanotechnology/instrumentation , Semiconductors , Transducers , Electric Conductivity , Electrochemistry/methods , Electromagnetic Fields , Electron Transport , Equipment Design , Equipment Failure Analysis , Mechanics , Molecular Weight , Nanostructures/ultrastructure , Nanotechnology/methods , Particle Size , Stress, Mechanical
6.
Nanotechnology ; 18(7): 075603, 2007 Feb 21.
Article in English | MEDLINE | ID: mdl-21730505

ABSTRACT

We detail the monitoring of amorphous carbon deposition during thermal chemical vapour deposition of carbon nanotubes and propose a contamination-less process to integrate high-quality single-walled carbon nanotubes into micro-electromechanical systems. The amorphous content is evaluated by confocal micro-Raman spectroscopy and by scanning/transmission electron microscopy. We show how properly chosen process parameters can lead to successful integration of single-walled nanotubes, enabling nano-electromechanical system synthesis.

7.
Nano Lett ; 6(2): 233-7, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16464041

ABSTRACT

We report on the fabrication and characterization of bulk micromachined pressure sensors based on individual single-walled carbon nanotubes (SWNTs) as the active electromechanical transducer elements. The electromechanical sensor device consists of an individual electrically connected SWNT adsorbed on top of a 100-nm-thick atomic layer deposited (ALD) circular alumina (Al(2)O(3)) membrane with a radius in the range of 50-100 microm. A white light interferometer (WLI) was used to measure the deflection of the membrane due to differential pressure, and the mechanical properties of the device were characterized by bulge testing. Finally, we performed the first electromechanical measurements on strained metallic SWNTs adhering to a membrane and found a piezoresistive gauge factor of approximately 210 for metallic SWNTs.


Subject(s)
Nanotubes, Carbon/chemistry , Aluminum Oxide/chemistry , Electrodes , Light , Membranes, Artificial , Nanotubes, Carbon/radiation effects , Particle Size , Photochemistry , Pressure , Sensitivity and Specificity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...