Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Bot Stud ; 64(1): 30, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37878199

ABSTRACT

BACKGROUND: Xylaria is a diverse and ecologically important genus in the Ascomycota. This paper describes the xylariaceous fungi present in an Ecuadorian Amazon Rainforest and investigates the decay potential of selected Xylaria species. Fungi were collected at Yasuní National Park, Ecuador during two collection trips to a single hectare plot divided into a 10-m by 10-m grid, providing 121 collection points. All Xylaria fruiting bodies found within a 1.2-m radius of each grid point were collected. Dried fruiting bodies were used for culturing and the internal transcribed spacer region was sequenced to identify Xylaria samples to species level. Agar microcosms were used to assess the decay potential of three selected species, two unknown species referred to as Xylaria 1 and Xylaria 2 and Xylaria curta, on four different types of wood from trees growing in Ecuador including balsa (Ochroma pyramidale), melina (Gmelina arborea), saman (Samanea saman), and moral (Chlorophora tinctoria). ANOVA and post-hoc comparisons were used to test for differences in biomass lost between wood blocks inoculated with Xylaria and uninoculated control blocks. Scanning electron micrographs of transverse sections of each wood and assay fungus were used to assess the type of degradation present. RESULTS: 210 Xylaria collections were sequenced, with 106 collections belonging to 60 taxa that were unknown species, all with less than 97% match to NCBI reference sequences. Xylaria with sequence matches of 97% or greater included X. aff. comosa (28 isolates), X. cuneata (9 isolates) X. curta and X. oligotoma (7 isolates), and X. apiculta (6 isolates)., All Xylaria species tested were able to cause type 1 or type 2 soft rot degradation in the four wood types and significant biomass loss was observed compared to the uninoculated controls. Balsa and melina woods had the greatest amount of biomass loss, with as much as 60% and 25% lost, respectively, compared to the controls. CONCLUSIONS: Xylaria species were found in extraordinary abundance in the Ecuadorian rainforest studied. Our study demonstrated that the Xylaria species tested can cause a soft rot type of wood decay and with the significant amount of biomass loss that occurred within a short incubation time, it indicates these fungi likely play a significant role in nutrient cycling in the Amazonian rainforest.

2.
Microbiol Resour Announc ; 11(9): e0058622, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35969048

ABSTRACT

The brown rot fungus Fomitopsis pinicola efficiently depolymerizes wood cellulose via the combined activities of oxidative and hydrolytic enzymes. Mass spectrometric analyses of culture filtrates identified specific proteins, many of which were differentially regulated in response to substrate composition.

3.
Appl Environ Microbiol ; 87(16): e0032921, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34313495

ABSTRACT

Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed gene expression levels of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression was observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi. IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that allow fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species­aspen, pine, and spruce­under various culture conditions. We found that F. pinicola is able to modify gene expression (transcription levels) across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This study provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.

5.
Fungal Biol ; 125(7): 551-559, 2021 07.
Article in English | MEDLINE | ID: mdl-34140151

ABSTRACT

The emerald ash borer (EAB) is an exotic forest pest that has killed millions of ash trees in the United States and Canada, resulting in an ecological disaster and billions of dollars in economic losses of urban landscape and forest trees. The beetle was first detected in Michigan in 2002 and has spread through much of the Eastern and Midwestern U.S., reaching Minnesota in 2009. Since then, it has spread across the state and poses a great risk to the more than 1 billion ash trees in Minnesota. The larval stage of EAB creates wounds on trees as they feed on the inner bark, causing disruption of water and sap flow that results in tree death. The fungal community associated with EAB larval galleries is poorly understood and the role these fungi may play in tree death is not known. This study describes fungi isolated from EAB larval galleries sampled throughout the main geographic areas of Minnesota where ash is affected by EAB. Fungal cultures were identified by extracting genomic DNA and sequencing the ITS region of the rDNA. Results from 1126 isolates reveal a diverse assemblage of fungi and three functional guilds comprised of canker pathogens, wood decay, and entomopathogenic fungi. The most common canker-associated genera were Cytospora followed by Phaeoacremonium, Paraconiothyrium, Coniothyrium, Nectria, Diplodia, and Botryosphaeria. Fungi in the Basidiomycota were nearly all wood decay causing fungi and many were species of pioneer colonizing genera including Sistotrema, Irpex, Peniophora, Phlebia and Ganoderma. Some of these fungi seriously affect urban trees, having the potential to cause rapid wood decay resulting in hazardous tree situations. Several entomopathogenic genera with the potential for biological control of EAB were also isolated from galleries. Purpureocillium was the most commonly isolated genus, followed by Beauveria, Clonostachys, Lecanicillium, Akanthomyces, Cordyceps, Microcera, Tolypocladium, and Pochonia. The results identify important fungal functional guilds that are occupying a new niche in ash trees resulting from EAB and include fungi that may accelerate decline in tree health, increase hazard tree situations, or may provide options for biological control of this destructive invasive insect.


Subject(s)
Coleoptera , Fraxinus , Fungi , Animals , Biodiversity , Coleoptera/microbiology , Fraxinus/microbiology , Fraxinus/parasitology , Fungi/classification , Fungi/isolation & purification , Fungi/physiology , Larva
6.
Mycologia ; 113(2): 261-267, 2021.
Article in English | MEDLINE | ID: mdl-33605842

ABSTRACT

The indigenous people of the United States and Canada long have used forest fungi for food, tinder, medicine, paint, and many other cultural uses. New information about historical uses of fungi continues to be discovered from museums as accessions of fungi and objects made from fungi collected over the last 150+ years are examined and identified. Two textiles thought to be made from fungal mats are located in the Hood Museum of Art, Dartmouth College, and the Oakland Museum of California. Scanning electron microscopy and DNA sequencing were used to attempt to identify the fungus that produced the mats. Although DNA sequencing failed to yield a taxonomic identification, microscopy and characteristics of the mycelial mats suggest that the mats were produced by Laricifomes officinalis. This first report of fungal mats used for textile by indigenous people of North America will help to alert museum curators and conservators as well as mycological researchers to their existence and hopefully lead to more items being discovered that have been made from fungal fabric.


Subject(s)
Fungi/chemistry , Indigenous Peoples , Textiles/analysis , Canada , Coriolaceae/chemistry , Coriolaceae/genetics , Fungi/classification , Fungi/genetics , Fungi/ultrastructure , Humans , Microscopy, Electron, Scanning , Museums , Mycelium/chemistry , Mycelium/ultrastructure , North America , Textiles/microbiology
7.
PLoS One ; 16(1): e0246049, 2021.
Article in English | MEDLINE | ID: mdl-33497418

ABSTRACT

Historic wooden structures in Polar Regions are being adversely affected by decay fungi and a warming climate will likely accelerate degradation. Fort Conger and the Peary Huts at Lady Franklin Bay in northern Ellesmere Island are important international heritage sites associated with early exploration in the High Arctic. Fort Conger, built by Adolphus Greely and expedition members during the First International Polar Year in 1881, was dismantled and used by Robert Peary and his expedition crew in the early 1900's to build several smaller shelters. These historic structures remain at the site but are deteriorating. This investigation examines the fungi associated with wood decay in the historic woods. Soft rot was observed in all 125 wood samples obtained from the site. The major taxa found associated with the decayed wood were Coniochaeta (18%), Phoma (13%) Cadophora (12%), Graphium (9%), and Penicillium (9%) as well as many other Ascomycota that are known to cause soft rot in wood. Micromorphological observations using scanning electron microscopy of historic wooden timbers that were in ground contact revealed advanced stages of type I soft rot. No wood destroying Basidiomycota were found. Identification of the fungi associated with decay in these historic woods is a first step to better understand the unusual decomposition processes underway in this extreme environment and will aid future research to help control decay and preserve this important cultural heritage.


Subject(s)
DNA, Fungal/isolation & purification , Fungi/isolation & purification , Wood/microbiology , Arctic Regions , Expeditions , Microscopy, Electron, Scanning
8.
Front Fungal Biol ; 2: 782181, 2021.
Article in English | MEDLINE | ID: mdl-37744128

ABSTRACT

Thinning operations that occur in managed red pine (Pinus resinosa) stands, create tree stumps that can serve as a habitat for fungi, especially Heterobasidion irregulare, the cause of a serious root disease. Different fungi can colonize stumps early and the community of fungi can change over time as initial fungal species become replaced. Samples were collected from both the native and non-native range of red pine from stumps that were cut at different time periods. Stumps that were harvested at 0-1, 2-3, 5-6, and 10-12 years before sampling were used to provide data on the diversity of fungi that colonize tree stumps and how these communities can change over time as well as how they influence colonization of H. irregulare. Traditional culturing methods and Illumina MiSeq sequencing were used to identify the fungi in the samples. Of particular interest was Phlebiopsis gigantea, which can colonize cut stumps and prevent H. irregulare from becoming established. Overall, P. gigantea was the most abundant fungus isolated and sequenced via Illumina MiSeq. Results show that Phlebiopsis gigantea was isolated from 90% of all stumps sampled for sites harvested within 3 years of sampling in the native range of red pine compared to 33% in the non-native range. For Illumina MiSeq, 5,940 total amplicon sequence variants (ASVs) were detected. P. gigantea represented 14% of the total reads and composed 19% of the reads in the native range and 8% in non-native range of red pine. Furthermore, P. gigantea represented 38% of the reads for stumps that were harvested within 3 years of sampling in the native range of red pine compared to 14% in the non-native range. These results help demonstrate that a higher amount of P. gigantea is present in the native range of red pine and could be acting as a native biological control agent. Additional fungi, including Resinicium bicolor, Hypochnicium cremicolor, Leptographium spp., and others identified at different cutting times are also discussed. Finally, different diversity indices revealed similar, but slightly higher diversity for southern sites via Shannon and Simpson Diversity indices. Beta diversity demonstrated a similar species composition in stumps harvested at different times with these stumps being grouped together based on harvesting years.

9.
Sci Rep ; 10(1): 14577, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32884059

ABSTRACT

Climate change is expected to accelerate the microbial degradation of the many extraordinary well-preserved organic archaeological deposits found in the Arctic. This could potentially lead to a major loss of wooden artefacts that are still buried within the region. Here, we carry out the first large-scale investigation of wood degradation within archaeological deposits in the Arctic. This is done based on wooden samples from 11 archaeological sites that are located along a climatic gradient in Western Greenland. Our results show that Ascomycota fungi are causing extensive soft rot decay at all sites regardless of climate and local environment, but the group is diverse and many of the species were only found once. Cadophora species known to cause soft rot in polar environments were the most abundant Ascomycota found and their occurrence in native wood samples underlines that they are present locally. Basidiomycota fungi were also present at all sites. In the majority of samples, however, these aggressive and potentially very damaging wood degraders have caused limited decay so far, probably due to unfavorable growth conditions. The presence of these wood degrading fungi suggests that archaeological wooden artefacts may become further endangered if climate change leads to more favorable growth conditions.

10.
Front Microbiol ; 11: 1288, 2020.
Article in English | MEDLINE | ID: mdl-32595628

ABSTRACT

Wood-decomposing fungi use distinct strategies to deconstruct wood that can significantly vary carbon release rates and fates. White and brown rot-type fungi attack lignin as a prerequisite to access carbohydrates (white rot) or selectively remove carbohydrates (brown rot). Soft rot fungi use less well-studied mechanisms to deconstruct wood (e.g., cavitation and erosion). These fungi often co-exist in nature, creating a balance in carbon turnover that could presumably "tip" in a changing climate. There is no simple genetic marker, however, to distinguish fungi by rot types, and traditional black and white distinctions (brown and white, in this case) cannot explain a spectrum of "gray" carbon loss possibilities. In this study, we tested 39 wood-degrading fungal strains along this spectrum of rot types. We tracked wood mass loss and chemical changes in aspen blocks in early- to mid-decay stages, including three signatures of fungal nutritional mode measured from wood rather than from fungus: dilute alkali solubility, water-soluble monosaccharides, and lignin loss (%) relative to density loss (%) (L/D). Results were then plotted relative to rot types and correlated with gene counts, combining new data with past results in some cases. Results yielded a novel distinction in soluble monosaccharide patterns for brown rot fungi, and reliable distinctions between white and brown rot fungi, although soft rot fungi were not as clearly distinguished as suggested in past studies. Gene contents (carbohydrate-active enzymes and peroxidases) also clearly distinguished brown and white rot fungi, but did not offer reliable correlation with lignin vs. carbohydrate selectivity. These results support the use of wood residue chemistry to link fungal genes (with known or unknown function) with emergent patterns of decomposition. Wood signatures, particularly L/D, not only confirm the rot type of dominant fungi, but they offer a more nuanced, continuous variable to which we can correlate genomic, transcriptomic, and secretomic evidence rather than limit it to functional categories as distinct "bins."

11.
PLoS One ; 15(6): e0234208, 2020.
Article in English | MEDLINE | ID: mdl-32497073

ABSTRACT

Mines and caves are unusual ecosystems containing unique fungi and are greatly understudied compared to other environments. The Soudan Mine in Tower, MN, an iron ore mine that closed in 1963 after operating for 80 years, was sampled to explore fungal diversity and to investigate taxa that tolerate heavy metals for potential bioprocessing technologies or as sources of bioactive molecules for drug discovery and possible biocontrol for white-nose syndrome (WNS) of bats. The mine is 714 m deep, has 18 levels and contains large quantities of wooden timbers, in contrast to many other oligotrophic subterranean environments. Fungi were cultured from samples and the ITS region was sequenced for identification and phylogenetic analysis. Results show Ascomycota are the dominant fungi followed by Basidiomycota and Mucoromycota. Out of 164 identified taxa, 108 belong to the Ascomycota and 26 and 31 to Basidiomycota and Mucoromycota, respectively. There are also 46 taxa that do not match (<97% BLAST GenBank identity) sequenced fungal species. Examples of the most commonly isolated Ascomycota include Scytalidium sp., Mariannaea comptospora, Hypocrea pachybasidioides, Oidiodendron griseum and Pochonia bulbillosa; Basidiomycota include Postia sp., Sistotrema brinkmannii, Calocera sp., Amylocorticiellum sp.; Mucoromycota include Mortierella parvispora, M. gamsii, M. hyaline, M. basiparvispora and Mortierella sp. Unusual growth forms were also found including large quantities of black rhizomorphs of Armillaria sinapina and white mycelial cords of Postia sp. mycelium, as well as Pseudogymnoascus species growing over large areas of mine walls and ceiling. The mine environment is a relatively extreme environment for fungi, with the presence of high levels of heavy metals, complete darkness and poor nutrient availability. Several genera are similar to those isolated in other extreme environments but phylogenetic analyses show differences in species between these environments. Results indicate this subterranean environment hosts a wide diversity of fungi, many of them not found in above ground environments.


Subject(s)
Fungi/isolation & purification , Iron , Mining , Wastewater/chemistry
12.
J Nat Prod ; 83(2): 344-353, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31986046

ABSTRACT

White-nose syndrome (WNS) is a devastating disease of hibernating bats caused by the fungus Pseudogymnoascus destructans. We obtained 383 fungal and bacterial isolates from the Soudan Iron Mine, an important bat hibernaculum in Minnesota, then screened this library for antifungal activity to develop biological control treatments for WNS. An extract from the fungus Oidiodendron truncatum was subjected to bioassay-guided fractionation, which led to the isolation of 14 norditerpene and three anthraquinone metabolites. Ten of these compounds were previously described in the literature, and here we present the structures of seven new norditerpene analogues. Additionally, this is the first report of 4-chlorophyscion from a natural source, previously identified as a semisynthetic product. The compounds PR 1388 and LL-Z1271α were the only inhibitors of P. destructans (MIC = 7.5 and 15 µg/mL, respectively). Compounds were tested for cytotoxicity against fibroblast cell cultures obtained from Myotis septentrionalis (northern long eared bat) and M. grisescens (gray bat) using a standard MTT viability assay. The most active antifungal compound, PR 1388, was nontoxic toward cells from both bat species (IC50 > 100 µM). We discuss the implications of these results in the context of the challenges and logistics of developing a substrate treatment or prophylactic for WNS.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Ascomycota/chemistry , Diterpenes/chemistry , Animals , Antifungal Agents/isolation & purification , Chiroptera/microbiology , Diterpenes/isolation & purification , Hibernation , Minnesota
13.
PLoS One ; 14(3): e0213753, 2019.
Article in English | MEDLINE | ID: mdl-30917134

ABSTRACT

Abydos is a large, complex archaeological site located approximately 500 km south of Cairo in Upper Egypt. The site has served as a cemetery for thousands of years and is where most of the Early Dynastic royal tombs are located. North Abydos includes the Middle Cemetery and the North Cemetery, which are separated from each other by a wadi. The Middle Cemetery was the burial ground for important Sixth Dynasty (2407-2260 BC) officials and over time for thousands of elite and non-elite individuals as well. Excavations at the core area of the Old Kingdom mortuary landscape have revealed many culturally important wooden objects but these are often found with extensive deterioration that can compromise their preservation. The objectives of this study were to characterize the biodegradation that has taken place in excavated wooden objects, elucidate the type of wood degradation present, obtain information on soil properties at the site and identify fungi currently associated with the wood and soils. Light and scanning electron microscopy studies were used to observe the micromorphological characteristics of the wood, and culturing on different media was done to isolate fungi. Identification of the fungi was done by examining morphological characteristics and extracting rDNA from pure cultures and sequencing the ITS region. Wooden objects, made from Cedrus, Juniperus and Acacia as well as several unidentified hardwoods, were found with extensive degradation and were exceedingly fragile. Termite damage was evident and frass from the subterranean termites along with sand particles were present in most woods. Evidence of soft rot attack was found in sections of wood that remained. Fungi isolated from wood and soils were identified as species of Aspergillus, Chaetomium, Cladosporium, Fusarium, Penicillium, Stemphylium Talaromyces and Trichoderma. Results provide important information on the current condition of the wood and gives insights to the identity of the fungi in wood and soils at the site. These results provide needed information to help develop conservation plans to preserve these degraded and fragile wooden objects.


Subject(s)
Biodegradation, Environmental , Wood/metabolism , Archaeology , Aspergillus/genetics , Aspergillus/isolation & purification , Cemeteries , DNA, Fungal/metabolism , DNA, Ribosomal/metabolism , Egypt , Fungi/genetics , Fungi/isolation & purification , Humans , Hydrogen-Ion Concentration , Soil Microbiology , Wood/chemistry , Wood/microbiology
14.
Appl Environ Microbiol ; 84(16)2018 08 15.
Article in English | MEDLINE | ID: mdl-29884757

ABSTRACT

Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed the gene expression levels and RNA editing profiles of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression and RNA editing were observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression and RNA editing encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. There was no overlap between differentially expressed and differentially edited genes, suggesting that these may provide F. pinicola with independent mechanisms for responding to different conditions. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. In contrast, the suites of genes subject to RNA editing were much less affected by culture conditions. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi.IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that enable fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species, aspen, pine, and spruce, under various culture conditions. We examined both gene expression (transcription levels) and RNA editing (posttranscriptional modification of RNA, which can potentially yield different proteins from the same gene). We found that F. pinicola is able to modify both gene expression and RNA editing profiles across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This work provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.


Subject(s)
Coriolaceae/genetics , Fungal Proteins/genetics , RNA Editing , Wood/microbiology , Coriolaceae/enzymology , Cytochrome P-450 Enzyme System/genetics , Gene Expression Regulation, Fungal , Glycoside Hydrolases , Laccase/genetics , Lignin/metabolism , Pinus/microbiology , Transcriptome , Wood/metabolism
15.
Fungal Biol ; 122(4): 254-263, 2018 04.
Article in English | MEDLINE | ID: mdl-29551199

ABSTRACT

The laccate (shiny or varnished) Ganoderma contain fungi that are important wood decay fungi of living trees and decomposers of woody debris. They are also an important group of fungi for their degradative enzymes and bioprocessing potential. Laboratory decay microcosms (LDMs) were used to study the relative decay ability of G anoderma curtisii, Ganoderma meredithiae, Ganoderma sessile, and G anoderma zonatum, which are four commonly encountered Ganoderma species in the U.S., across four wood types (Pinus taeda, Quercus nigra, Q uercus virginiana, and Sabal palmetto). Generally, all Ganoderma species were able to decay all types of wood tested despite not being associated with only certain wood types in nature. G. sessile, on average caused the most decay across all wood types. Among the wood types tested, water oak (Q. nigra) had the most mass loss by all species of Ganoderma. Scanning electron microscopy was used to assess micromorphological decay patterns across all treatments. All Ganoderma species simultaneously decayed wood cells of all wood types demonstrating their ability to attack all cell wall components. However, G. zonatum caused selective delignification in some sclerenchyma fibers of the vascular bundles in palm (S. palmetto) as well as in fibers of water oak. In addition, G. zonatum hyphae penetrated fibers of palm and oak wood causing an unusual decay not often observed in basidiomycetes resulting in cavity formation in secondary walls. Cavities within the secondary walls of fibers gradually expanded and coalesced resulting in degradation of the S2 layer. Differences in colony growth rates were observed when Ganoderma species were grown on medium amended with water soluble sapwood extracts from each wood type. G. meredithiae had enhanced growth on all media amended with sapwood extracts, while G. curtisii, G. sessile and G. zonatum had slower growth on loblolly pine extract amended medium.


Subject(s)
Biotransformation , Ganoderma/growth & development , Ganoderma/metabolism , Lignin/metabolism , Wood/metabolism , Wood/microbiology , Hyphae/growth & development , Microscopy, Electron, Scanning , United States
16.
Phytochemistry ; 148: 1-10, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29366851

ABSTRACT

Recent investigations of filamentous fungi isolated from coastal areas and historic wooden structures in the Ross Sea and Peninsula regions of Antarctica have identified the genus Cadophora as one of the most abundant fungal groups, comprising more than 30% of culturable fungi at some locations. A methanol extract of Cadophora luteo-olivacea grown on rice media yielded the known polyketides spiciferone A, spiciferol A, dihydrospiciferone A and dihydrospiciferol A. Additionally, nine related hexaketides were identified, including spiciferone F, two isomers of the known fungal bicyclic ketal colomitide B, cadopherones A-D, similin C, and spicifernin B. HPLC and NMR analysis of extracts from other isolates collected in Antarctica suggests that the spiciferones and colomitides are produced by at least two different Cadophora species. Preliminary precursor feeding experiments provided evidence for the biosynthesis of the colomitides from the same polyketide pathway as the spiciferone phytotoxins, possibly via a type III polyketide synthase (PKS). None of the compounds were active in a panel of anti-bacterial, anti-fungal, and mammalian cytotoxicity assays.


Subject(s)
Ascomycota/isolation & purification , Polyketide Synthases/metabolism , Polyketides/isolation & purification , Wood/microbiology , Antarctic Regions , Cell Survival/drug effects , Molecular Conformation , Molecular Structure , Phylogeny , Polyketides/chemistry , Polyketides/pharmacology
17.
PLoS One ; 12(6): e0178968, 2017.
Article in English | MEDLINE | ID: mdl-28617823

ABSTRACT

White-nose syndrome (WNS) is a devastating fungal disease that has been causing the mass mortality of hibernating bats in North America since 2006 and is caused by the psychrophilic dermatophyte Pseudogymnoascus destructans. Infected bats shed conidia into hibernaculum sediments and surfaces, but it is unknown if P. destructans can form stable, reproductive populations outside its bat hosts. Previous studies have found non-pathogenic Pseudogymnoascus in bat hibernacula, and these fungi may provide insight into the natural history of P. destructans. We compared the relatedness, resource capture, and competitive ability of non-pathogenic Pseudogymnoascus isolates with P. destructans to determine if they have similar adaptations for survival in hibernacula sediment. All non-pathogenic Pseudogymnoascus isolates grew faster, utilized a broader range of substrates with higher efficiency, and were generally more resistant to antifungals compared to P. destructans. All isolates also showed the ability to displace P. destructans in co-culture assays, but only some produced extractible antifungal metabolites. These results suggest that P. destructans would perform poorly in the same environmental niche as non-pathogenic Pseudogymnoascus, and must have an alternative saprophytic survival strategy if it establishes active populations in hibernaculum sediment and non-host surfaces.


Subject(s)
Chiroptera/microbiology , Mycoses/veterinary , Saccharomycetales/classification , Animals , Antifungal Agents/pharmacology , Chiroptera/physiology , DNA, Fungal/genetics , Hibernation , Nose/microbiology , Phylogeny , Saccharomycetales/drug effects , Saccharomycetales/growth & development , Saccharomycetales/isolation & purification
18.
Fungal Biol ; 121(2): 145-157, 2017 02.
Article in English | MEDLINE | ID: mdl-28089046

ABSTRACT

Very little is known about fungal diversity in Antarctica as compared to other biomes and how these important organisms function in this unusual ecosystem. Perhaps one of the most unusual ecosystems is that of Deception Island; an active volcanic island part of the South Shetland Islands of the Antarctic Peninsula. Here we describe the fungal diversity associated with historic wood from structures on the island, which reveals a diverse fungal assemblage of known wood decay fungi as well as the discovery of undescribed species. The major group of wood decay fungi identified were species of Cadophora and as shown in previous studies in other geographic regions of Antarctica, they caused a soft-rot type of decay in the introduced woods. Additionally, unlike other areas of Antarctica that have been studied, filamentous basidiomycetes (Hypochniciellum spp. and Pholiota spp.) were also identified that have different modes of degradation including brown and white rot. Matches of fungal sequences to known species in temperate regions likely introduced on building materials indicates human influences and volcanic activity have greatly impacted fungal diversity. Lahars (mudslides from volcanic activity) have partially buried many of the structures and the buried environment as well as the moist, warm soils provided conditions conducive for fungal growth that are not found in other regions of Antarctica. The diverse assemblage of decay fungi and different forms of wood decomposition add to the difficulty of conserving wooden structures at these important polar heritage sites.


Subject(s)
Biodiversity , Environmental Microbiology , Fungi/isolation & purification , Fungi/metabolism , Wood/metabolism , Antarctic Regions , Biotransformation , Fungi/classification , Human Activities , Humans , Islands
19.
J Nat Prod ; 78(6): 1456-60, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26035018

ABSTRACT

One new isochromane (pseudoanguillosporin C, 2), seven isochromanones (soudanones A-G, 3-9), and six known analogues including 10 and 11 were isolated from a culture of the fungus Cadophora sp. 10-5-2 M, collected from the subterranean 10th level of the Soudan Underground Iron Mine in Minnesota. All of the compounds were tested against a panel of microbial pathogens, and 2, 3, 10, and 11 were found to have activity against Cryptococcus neoformans (MIC = 35, 40, 20, and 30 µg/mL, respectively). Compound 11 was also active against Candida albicans, with an MIC of 40 µg/mL.


Subject(s)
Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Chromones/isolation & purification , Antifungal Agents/chemistry , Candida albicans/drug effects , Chromans , Chromones/chemistry , Chromones/pharmacology , Cryptococcus neoformans/drug effects , Iron , Microbial Sensitivity Tests , Mining , Minnesota , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular
20.
Fungal Genet Biol ; 76: 78-92, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25683379

ABSTRACT

Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited.


Subject(s)
Agaricales/genetics , Evolution, Molecular , Genome, Fungal , Wood/microbiology , Agaricales/enzymology , Agaricales/pathogenicity , Lignin/metabolism , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...