Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 101(6): 5159-5165, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29525317

ABSTRACT

We conducted 2 experiments to determine lysine loss from 2 lipid-coated lysine products after mixing with silage. In our first experiment, we mixed 2 lipid-coated lysine products, crystalline lysine or crystalline lysine and amounts of lipid identical to amounts included in lipid-coated lysine products, with alfalfa or corn silage that had 2 different amounts of acidity. Lysine appeared to disassociate from lipid-coated lysine products in a nonlinear manner after mixing with either alfalfa or corn silage at different amounts of acidity. Additionally, silage source and acidity affected amounts of lysine released from lipid-coated lysine products after mixing. In a corresponding experiment, in vitro estimates of lysine available to ruminal microbiota after mixing with alfalfa or corn silage at different amounts of acidity were measured by ammonia release. In vitro measures were conducted with or without monensin to allow estimates of effects of monensin on amounts of lysine released from the 2 lipid-coated lysine products. It is unclear whether in vitro estimates of lysine fermentation from lipid-coated lysine are truly reflective of ruminal degradation of lysine from lipid-coated lysine because amounts of time needed to measure differences between different lysine sources were greater than typical estimates of mean ruminal particulate retention time. Nonetheless, monensin apparently reduced ammonia release from lysine, but ammonia release from lipid-coated lysine did not differ from crystalline lysine. Clearly, methods of manufacture together with physical and chemical characteristics of diet can affect amounts of lysine provided from lipid-coated lysine products to ruminants.


Subject(s)
Digestion/physiology , Drug Carriers , Fermentation , Lysine/metabolism , Animals , Diet , Female , Lactation , Lipids , Lysine/administration & dosage , Medicago sativa , Rumen , Silage , Zea mays
2.
Transl Anim Sci ; 1(3): 311-319, 2017 Sep.
Article in English | MEDLINE | ID: mdl-32704656

ABSTRACT

We conducted 2 experiments to determine lysine bioavailability from 2 lipid-coated lysine products. In an in vitro experiment we mixed each lipid-coated lysine product with either alfalfa- or corn-silage at different amounts of acidity. Scanning electron micrographs indicated that surface structure of each lipid-coated lysine particle was eroded after mixing with silage. Additionally, visual evaluation of scanning electron micrographs suggested that peripheral surface abrasion of lipid-coated lysine may be greater when lipid-coated lysine was mixed with alfalfa silage in comparison to corn silage. In a corresponding experiment, in vivo measures of lysine bioavailability to sheep from 2 lipid-coated lysine products and lysine-HCl were determined after mixing in corn silage. Plasma lysine concentrations increased linearly (P < 0.01) in response to abomasal lysine infusion indicating that our model was sensitive to increases in metabolizable lysine flow. Bioavailability of each lipid-coated lysine source and dietary lysine-HCl were calculated to be 23, 15, and 18%, respectively. Even though each dietary source of lysine increased plasma lysine, rates of increases in plasma lysine from one lipid-coated lysine source (linear; P = 0.20) and lysine-HCl (linear; P = 0.11) were not different from plasma lysine levels supported by diet alone. However, the rate of plasma lysine increase in response to lysine from the other lipid-coated lysine source was greater (P = 0.04) than plasma lysine from feed alone. Nonetheless, the rate of plasma lysine increase in response to lipid-coated lysine did not differ (P ≥ 0.70) from the rate of plasma lysine increase from lysine-HCl. Clearly, methods of manufacture, together with physical and chemical characteristics of diet, can impact amounts of metabolizable lysine provided from lipid-coated lysine products. Direct measures of lysine bioavailability from lipid-coated lysine products after mixing with diets should be based on measurements with the products treated similarly to the method of feeding.

SELECTION OF CITATIONS
SEARCH DETAIL
...