Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(14): 13232-13240, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37449816

ABSTRACT

"Magic-sized" nanocrystals (MSNCs) grow in discrete jumps between a series of specific sizes. Consequently, MSNCs have been explored as an alternative route to uniform semiconductor particles, potentially with atomic precision. However, because the growth mechanism has been poorly understood, the best strategies to control MSNC syntheses and obtain desired sizes are unknown. Experiments have found that common parameters, such as growth time and temperature, have limited utility. Here, we theoretically and experimentally investigate reactant supersaturation as a tool to control MSNC growth. We compare direct synthesis of CdSe MSNCs with ripening of isolated MSNCs or their mixtures. Surprisingly, we find that MSNCs readily synchronize to the same growth trajectory, even starting from distinct initial conditions, explaining the robustness of MSNC growth. Further, by understanding the synchronization mechanism, we demonstrate methods to control the final MSNC size. These results deepen our knowledge of MSNCs and indicate strategies to tailor their growth.

2.
Nanomaterials (Basel) ; 13(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37242045

ABSTRACT

Gamma alumina (γ-Al2O3) is widely used as a catalyst and catalytic support due to its high specific surface area and porosity. However, synthesis of γ-Al2O3 nanocrystals is often a complicated process requiring high temperatures or additional post-synthetic steps. Here, we report a single-step synthesis of size-controlled and monodisperse, facetted γ-Al2O3 nanocrystals in an inductively coupled nonthermal plasma reactor using trimethylaluminum and oxygen as precursors. Under optimized conditions, we observed phase-pure, cuboctahedral γ-Al2O3 nanocrystals with defined surface facets. Nuclear magnetic resonance studies revealed that nanocrystal surfaces are populated with AlO6, AlO5 and AlO4 units with clusters of hydroxyl groups. Nanocrystal size tuning was achieved by varying the total reactor pressure yielding particles as small as 3.5 nm, below the predicted thermodynamic stability limit for γ-Al2O3.

3.
Nano Lett ; 21(18): 7651-7658, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34464529

ABSTRACT

Magic-sized semiconductor nanocrystals (MSNCs) grow via discrete jumps between specific sizes. Despite their potential to offer atomically precise structures, their use has been limited by poor stability and trap-dominated photoluminescence. Recently, CdSe MSNCs have been grown to larger sizes. We exploit such particles and demonstrate a method to grow shells on CdSe MSNC cores via high-temperature synthesis. Thin CdS shells lead to dramatic improvements in the emissive properties of the MSNCs, narrowing their fluorescence line widths, enhancing photoluminescence quantum yields, and eliminating trap emission. Although thicker CdS shells lead to decreased performance, CdxZn1-xS alloyed shells maintain efficient and narrow emission lines. These alloyed core/shell crystallites exhibit a tetrahedral shape, in agreement with a recent model for MSNC growth. Our results indicate that MSNCs can compete with other state-of-the-art semiconductor nanocrystals. Furthermore, these core/shell structures will allow further study of MSNCs and their potential for atomically precise growth.

4.
ACS Omega ; 5(34): 21853-21861, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32905341

ABSTRACT

Molybdenum disulfide (MoS2) is being studied for a wide range of applications including lithium-ion batteries and hydrogen evolution reaction catalysts. In this paper, we present a single-step nonthermal plasma-enhanced chemical vapor deposition (PECVD) process for the production of two-dimensional MoS2. This method provides an alternative route to established CVD and plasma synthesis routes. The approach presented here synthesizes films in only a few minutes using elemental sulfur (S8) and molybdenum pentachloride (MoCl5) as precursors. Deposition utilizes a nonthermal inductively coupled plasma reactor and temperatures around 500 °C. Film growth characteristics and nucleation are studied as a function of precursor concentrations, argon flow rate, plasma power, and deposition time. Few-layer two-dimensional (MoS2) films were formed at low precursor concentrations. Films with nanoparticle-like features were formed when the precursor concentration was high. Noncontinuous nonstoichiometric films were found at low plasma power, while high plasma power led to continuous films with good stoichiometry. The vacancies and defects in these films may provide active sites for hydrogen evolution.

5.
ACS Appl Mater Interfaces ; 12(4): 4572-4578, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31909959

ABSTRACT

Silicon quantum dots (Si QDs) are attractive, nontoxic luminophores for luminescent solar concentrators (LSCs). Here, we produced Si QD/poly(methyl methacrylate) (PMMA) films on glass by doctor-blading polymer solutions and achieved films with low light scattering at an order of magnitude higher Si QD weight fraction than has been achieved previously in the bulk. We suggest that the fast solidification rate of films as compared to slow bulk polymerization is an enabling factor in avoiding large agglomerates within the nanocomposites. Scanning electron microscopy confirmed that ∼100 nm or larger QD agglomerates exist in light-scattering films, and photoluminescence intensity measurements show that light scattering, if present, significantly reduces waveguiding efficiencies for LSCs. Nonscattering films fabricated in this work exhibit high ultraviolet absorption (>80%) paired with high visible transmission (>87%) and minimal visible haze (∼1%), making them well suited for semitransparent coatings for LSCs realized as solar harvesting windows.

6.
Ultramicroscopy ; 210: 112919, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31911393

ABSTRACT

We present a multi-region extension of power law background subtraction for core-level EEL spectra to improve the robustness of background removal. This method takes advantage of the post-edge shape of core-loss EEL edges to enable simultaneous fitting of pre- and post-edge background regions. This method also produces simultaneous and consistent background removal from multiple edges in a single EEL spectrum. The stability of this method with respect to the fitting energy window and the EELS signal to noise ratio is also discussed.

7.
Nano Lett ; 19(12): 8920-8927, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31702928

ABSTRACT

Separating electrons from their source atoms in La-doped BaSnO3, the first perovskite oxide semiconductor to be discovered with high room-temperature electron mobility, remains a subject of great interest for achieving high-mobility electron gas in two dimensions. So far, the vast majority of work in perovskite oxides has focused on heterostructures involving SrTiO3 as an active layer. Here we report the demonstration of modulation doping in BaSnO3 as the high room-temperature mobility host without the use of SrTiO3. Significantly, we show the use of angle-resolved hard X-ray photoelectron spectroscopy (HAXPES) as a nondestructive approach to not only determine the location of electrons at the buried interface but also to quantify the width of electron distribution in BaSnO3. The transport results are in good agreement with the results of self-consistent solution to one-dimensional Poisson and Schrödinger equations. Finally, we discuss viable routes to engineer two-dimensional electron gas density through band-offset engineering.

8.
Sci Adv ; 5(8): eaaw1462, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31467972

ABSTRACT

Many envisioned applications of semiconductor nanocrystals (NCs), such as thermoelectric generators and transparent conductors, require metallic (nonactivated) charge transport across an NC network. Although encouraging signs of metallic or near-metallic transport have been reported, a thorough demonstration of nonzero conductivity, σ, in the 0 K limit has been elusive. Here, we examine the temperature dependence of σ of ZnO NC networks. Attaining both higher σ and lower temperature than in previous studies of ZnO NCs (T as low as 50 mK), we observe a clear transition from the variable-range hopping regime to the metallic regime. The critical point of the transition is distinctly marked by an unusual power law close to σ ∝ T 1/5. We analyze the critical conductivity data within a quantum critical scaling framework and estimate the metal-insulator transition (MIT) criterion in terms of the free electron density, n, and interparticle contact radius, ρ.

10.
Phys Rev Lett ; 122(7): 075501, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30848623

ABSTRACT

Inspired by recent experimental subatomic measurements using analytical aberration-corrected scanning transmission electron microscopes, we study electron probe propagation in crystalline SrTiO_{3} at the subatomic length scale. Here, we report the existence of subatomic channeling and the formation of a helicon-type beam at this scale. The results of beam propagation simulations, which are performed at various crystal temperatures, STEM probe convergence angles (10-50 mrad), and beam energies (80-300 keV), showed that reducing the ambient temperature can enhance the subatomic channeling and STEM probe parameters can be used to control the features of helicon-type beams.

12.
Ultramicroscopy ; 177: 53-57, 2017 06.
Article in English | MEDLINE | ID: mdl-28292686

ABSTRACT

Quantitative ADF-STEM imaging paired with image simulations has proven to be a powerful technique for determining the three dimensional location of substitutionally doped atoms in thin films. Expansion of this technique to lightly-doped nanocrystals requires an understanding of the influence of specimen mistilt on dopant visibility due to the difficulty of accurate orientation determination in such systems as well as crystal movement under the beam. In this study, the effects of specimen mistilt on ADF-STEM imaging are evaluated using germanium-doped silicon nanocrystals as model systems. It is shown that dopant visibility is a strong function of specimen mistilt, and the accuracy of specimen orientation is an important factor in the analysis of three-dimensional dopant location, but the sensitivity to mistilt can be weakened by increasing the STEM probe convergence angle and optimizing ADF detector inner angle.

13.
ACS Appl Mater Interfaces ; 9(9): 8263-8270, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28169525

ABSTRACT

In this work, we present an all-gas-phase approach for the synthesis of quantum-confined core/shell nanocrystals (NCs) as a promising alternative to traditional solution-based methods. Spherical quantum dots (QDs) are grown using a single-stage flow-through nonthermal plasma, yielding monodisperse NCs, with a concentric core/shell structure confirmed by electron microscopy. The in-flight negative charging of the NCs by plasma electrons keeps the NC cores separated during shell growth. The success of this gas-phase approach is demonstrated here through the study of Ge/Si core/shell QDs. We find that the epitaxial growth of a Si shell on the Ge QD core compressively strains the Ge lattice and affords the ability to manipulate the Ge band structure by modulation of the core and shell dimensions. This all-gas-phase approach to core/shell QD synthesis offers an effective method to produce high-quality heterostructured NCs with control over the core and shell dimensions.

14.
Nano Lett ; 15(12): 8162-9, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26551232

ABSTRACT

Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...