Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Eur Stroke J ; : 23969873241255867, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853524

ABSTRACT

RATIONALE: Novel therapeutic approaches are needed in stroke recovery. Whether pharmacological therapies are beneficial for enhancing stroke recovery is unclear. Dopamine is a neurotransmitter involved in motor learning, reward, and brain plasticity. Its prodrug levodopa is a promising agent for stroke recovery. AIM AND HYPOTHESIS: To investigate the hypothesis that levodopa, in addition to standardized rehabilitation therapy based on active task training, results in an enhancement of functional recovery in acute ischemic or hemorrhagic stroke patients compared to placebo. DESIGN: ESTREL (Enhancement of Stroke REhabilitation with Levodopa) is a randomized (ratio 1:1), multicenter, placebo-controlled, double-blind, parallel-group superiority trial. PARTICIPANTS: 610 participants (according to sample size calculation) with a clinically meaningful hemiparesis will be enrolled ⩽7 days after stroke onset. Key eligibility criteria include (i) in-hospital-rehabilitation required, (ii) capability to participate in rehabilitation, (iii) previous independence in daily living. INTERVENTION: Levodopa 100 mg/carbidopa 25 mg three times daily, administered for 5 weeks in addition to standardized rehabilitation. The study intervention will be initiated within 7 days after stroke onset. COMPARISON: Matching placebo plus standardized rehabilitation. OUTCOMES: The primary outcome is the between-group difference of the Fugl-Meyer-Motor Assessment (FMMA) total score measured 3 months after randomization. Secondary outcomes include patient-reported health and wellbeing (PROMIS 10 and 29), patient-reported assessment of improvement, Rivermead Mobility Index, modified Rankin Scale, National Institutes of Health Stroke Scale (NIHSS), and as measures of harm: mortality, recurrent stroke, and serious adverse events. CONCLUSION: The ESTREL trial will provide evidence of whether the use of Levodopa in addition to standardized rehabilitation in stroke patients leads to better functional recovery compared to rehabilitation alone.

2.
Front Digit Health ; 6: 1359771, 2024.
Article in English | MEDLINE | ID: mdl-38633383

ABSTRACT

Introduction: Wearables are potentially valuable tools for understanding mobility behavior in individuals with neurological disorders and how it changes depending on health status, such as after rehabilitation. However, the accurate detection of gait events, which are crucial for the evaluation of gait performance and quality, is challenging due to highly individual-specific patterns that also vary greatly in movement and speed, especially after stroke. Therefore, the purpose of this study was to assess the accuracy, concurrent validity, and test-retest reliability of a commercially available insole system in the detection of gait events and the calculation of stance duration in individuals with chronic stroke. Methods: Pressure insole data were collected from 17 individuals with chronic stroke during two measurement blocks, each comprising three 10-min walking tests conducted in a clinical setting. The gait assessments were recorded with a video camera that served as a ground truth, and pressure insoles as an experimental system. We compared the number of gait events and stance durations between systems. Results and discussion: Over all 3,820 gait events, 90.86% were correctly identified by the insole system. Recall values ranged from 0.994 to 1, with a precision of 1 for all measurements. The F1 score ranged from 0.997 to 1. Excellent absolute agreement (Intraclass correlation coefficient, ICC = 0.874) was observed for the calculation of the stance duration, with a slightly longer stance duration recorded by the insole system (difference of -0.01 s). Bland-Altmann analysis indicated limits of agreement of 0.33 s that were robust to changes in walking speed. This consistency makes the system well-suited for individuals post-stroke. The test-retest reliability between measurement timepoints T1 and T2 was excellent (ICC = 0.928). The mean difference in stance duration between T1 and T2 was 0.03 s. We conclude that the insole system is valid for use in a clinical setting to quantitatively assess continuous walking in individuals with stroke.

3.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Article in English | MEDLINE | ID: mdl-37941203

ABSTRACT

Stroke is a leading cause of long-term disability, such as loss of upper limb function. Active arm movement and frequent practice are essential to regain such function. Wearable sensors that trigger individualized movement reminders can promote awareness of the affected limb during periods of inactivity. This study investigated the immediate effect of vibrotactile reminders based on activity counts on affected arm use, the evolution of the effect throughout a 6-week intervention at home, and whether the time of the day influences the response to the reminder. Thirteen participants who experienced a unilateral ischemic stroke were included in the analysis. Activity counts were found to increase significantly after receiving a reminder. The immediate effect of receiving a reminder was maintained throughout the day as well as during the study duration of 6 weeks. In conclusion, wearable activity trackers with a feature to trigger individualized vibrotactile reminders could be a promising rehabilitation tool to increase arm activity of the affected side in stroke patients in their home environment.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Arm , Upper Extremity , Movement
4.
Front Neurol ; 14: 1149673, 2023.
Article in English | MEDLINE | ID: mdl-37139076

ABSTRACT

Background: Autoregulation of the cerebral vasculature keeps brain perfusion stable over a range of systemic mean arterial pressures to ensure brain functioning, e.g., in different body positions. Verticalization, i.e., transfer from lying (0°) to upright (70°), which causes systemic blood pressure drop, would otherwise dramatically lower cerebral perfusion pressure inducing fainting. Understanding cerebral autoregulation is therefore a prerequisite to safe mobilization of patients in therapy. Aim: We measured the impact of verticalization on cerebral blood flow velocity (CBFV) and systemic blood pressure (BP), heart rate (HR) and oxygen saturation in healthy individuals. Methods: We measured CBFV in the middle cerebral artery (MCA) of the dominant hemisphere in 20 subjects using continuous transcranial doppler ultrasound (TCD). Subjects were verticalized at 0°, -5°, 15°, 30°, 45° and 70° for 3-5 min each, using a standardized Sara Combilizer chair. In addition, blood pressure, heart rate and oxygen saturation were continuously monitored. Results: We show that CBFV progressively decreases in the MCA with increasing degrees of verticalization. Systolic and diastolic BP, as well as HR, show a compensatory increase during verticalization. Conclusion: In healthy adults CBFV changes rapidly with changing levels of verticalization. The changes in the circulatory parameters are similar to results regarding classic orthostasis. Registration: ClinicalTrials.gov, identifier: NCT04573114.

5.
Sensors (Basel) ; 23(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36679424

ABSTRACT

The restoration of gait and mobility after stroke is an important and challenging therapy goal due to the complexity of the potentially impaired functions. As a result, precise and clinically feasible assessment methods are required for personalized gait rehabilitation after stroke. The aim of this study is to investigate the reliability and validity of a sensor-based gait analysis system in stroke survivors with different severities of gait deficits. For this purpose, 28 chronic stroke survivors (9 women, ages: 62.04 ± 11.68 years) with mild to moderate walking impairments performed a set of ambulatory assessments (3× 10MWT, 1× 6MWT per session) twice while being equipped with a sensor suit. The derived gait reports provided information about speed, step length, step width, swing and stance phases, as well as joint angles of the hip, knee, and ankle, which we analyzed for test-retest reliability and hypothesis testing. Further, test-retest reliability resulted in a mean ICC of 0.78 (range: 0.46-0.88) for walking 10 m and a mean ICC of 0.90 (range: 0.63-0.99) for walking 6 min. Additionally, all gait parameters showed moderate-to-strong correlations with clinical scales reflecting lower limb function. These results support the applicability of this sensor-based gait analysis system for individuals with stroke-related walking impairments.


Subject(s)
Stroke Rehabilitation , Stroke , Wearable Electronic Devices , Humans , Female , Middle Aged , Aged , Gait Analysis , Reproducibility of Results , Gait , Walking
6.
PLoS One ; 17(8): e0272777, 2022.
Article in English | MEDLINE | ID: mdl-35939514

ABSTRACT

OBJECTIVE: The 'Early Prediction of Functional Outcome after Stroke' (EPOS) model was developed to predict the presence of at least some upper limb capacity (Action Research Am Test [ARAT] ≥10/57) at 6 months based on assessments on days 2, 5 and 9 after stroke. External validation of the model is the next step towards clinical implementation. The objective here is to externally validate the EPOS model for upper limb outcome 3 months poststroke in Switzerland and extend the model using an ARAT cut-off at 32 points. METHODS: Data from two prospective longitudinal cohort studies including first-ever stroke patients admitted to a Swiss stroke center were analyzed. The presence of finger extension and shoulder abduction was measured on days 1 and 8 poststroke in Cohort 1, and on days 3 and 9 in Cohort 2. Upper limb capacity was measured 3 months poststroke. Discrimination (area under the curve; AUC) and calibration obtained with the model were determined. RESULTS: In Cohort 1 (N = 39, median age 74 years), the AUC on day 1 was 0.78 (95%CI 0.61, 0.95) and 0.96 (95%CI 0.90, 1.00) on day 8, using the model of day 5. In Cohort 2 (N = 85, median age 69 years), the AUC was 0.96 (95%CI 0.93, 0.99) on day 3 and 0.89 (95% CI 0.80, 0.98) on day 9. Applying a 32-point ARAT cut-off resulted in an AUC ranging from 0.82 (95%CI 0.68, 0.95; Cohort 1, day 1) to 0.95 (95%CI 0.87, 1.00; Cohort 1, day 8). CONCLUSIONS: The EPOS model was successfully validated in first-ever stroke patients with mild-to-moderate neurological impairments, who were independent before their stroke. Now, its impact on clinical practice should be investigated in this population. Testing the model's performance in severe (recurrent) strokes and stratification of patients using the ARAT 32-point cut-off is required to enhance the model's generalizability and potential clinical impact.


Subject(s)
Stroke Rehabilitation , Stroke , Aged , Humans , Longitudinal Studies , Prospective Studies , Recovery of Function , Stroke/diagnosis , Upper Extremity
8.
Front Physiol ; 13: 857963, 2022.
Article in English | MEDLINE | ID: mdl-35795644

ABSTRACT

Purpose: The walk ratio (WR)-the step-length/cadence relation-is a promising measure for gait control. GPS-running watches deliver clinically relevant outcomes including the WR. The aim of this study was to determine test-retest agreement, reliability and concurrent validity of an outdoor WR assessment using a GPS-running watch. Methods: Healthy adults and moderate-high functioning stroke survivors (≥6 months), performed the 1 km-outdoor walk twice using a GPS-running watch (Garmin Forerunner 35, GFR35) and a Step Activity Monitor (SAM 3). Global cognition was assessed using the Montreal Cognitive Assessment. Test-retest agreement and reliability were assessed using Bland-Altman plots, standard error of measurement (SEM), intraclass correlation coefficients (ICCs) and smallest detectable changes (SDCs). Concurrent validity was determined by the mean difference (MD), standard error (SE), mean absolute percentage errors (MAPEs) and Spearman's Rho between GFR35 and SAM3. WR values of the two groups were compared by a Welch's test. A hierarchical multiple regression was performed with the WR as dependent variable and possible predictors as independent variables. Results: Fifty-one healthy adults [median: 60.0 (47.0, 67.0) years) and 20 stroke survivors [mean: 63.1 (12.4) years, median: 76 (30, 146) months post-stroke] were included. Test-retest agreement and reliability were excellent (SEM% ≤ 2.2, ICCs > 0.9, SDC% ≤ 6.1) and concurrent validity was high (MAPE < 5, ρ > 0.7) for those walking ≥ 1 m/s. Walking < 1 m/s impaired accurate step counting and reduced agreement, reliability, and validity. The WR differed between healthy adults and stroke survivors (t = -2.126, p = 0.045). The hierarchical regression model including stroke and global cognition (Montreal Cognitive Assessment, 0-30) explained 25% of the WR variance (ΔR2 = 0.246, p < 0.001). Stroke had no effect (ß = -0.05, p = 0.682), but global cognition was a predictor for an altered WR (ß = 0.44, p = 0.001). Discussion: The outdoor WR assessment using the GFR35 showed excellent test-retest agreement, reliability and concurrent validity in healthy adults and chronic stroke survivors walking at least 1 m/s. As the WR seems relevant in chronic stroke, future studies should further investigate this parameter.

9.
Sci Rep ; 12(1): 7601, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534629

ABSTRACT

Characterizing post-stroke impairments in the sensorimotor control of arm and hand is essential to better understand altered mechanisms of movement generation. Herein, we used a decomposition algorithm to characterize impairments in end-effector velocity and hand grip force data collected from an instrumented functional task in 83 healthy control and 27 chronic post-stroke individuals with mild-to-moderate impairments. According to kinematic and kinetic raw data, post-stroke individuals showed reduced functional performance during all task phases. After applying the decomposition algorithm, we observed that the behavioural data from healthy controls relies on a low-dimensional representation and demonstrated that this representation is mostly preserved post-stroke. Further, it emerged that reduced functional performance post-stroke correlates to an abnormal variance distribution of the behavioural representation, except when reducing hand grip forces. This suggests that the behavioural repertoire in these post-stroke individuals is mostly preserved, thereby pointing towards therapeutic strategies that optimize movement quality and the reduction of grip forces to improve performance of daily life activities post-stroke.


Subject(s)
Hand Strength , Stroke , Arm , Hand , Humans , Movement
10.
Front Neurol ; 13: 797791, 2022.
Article in English | MEDLINE | ID: mdl-35585839

ABSTRACT

Introduction: The Early Prediction of Functional Outcome after Stroke (EPOS) model for independent gait is a tool to predict between days 2 and 9 poststroke whether patients will regain independent gait 6 months after stroke. External validation of the model is important to determine its clinical applicability and generalizability by testing its performance in an independent cohort. Therefore, this study aimed to perform a temporal and geographical external validation of the EPOS prediction model for independent gait after stroke but with the endpoint being 3 months instead of the original 6 months poststroke. Methods: Two prospective longitudinal cohort studies consisting of patients with first-ever stroke admitted to a Swiss hospital stroke unit. Sitting balance and strength of the paretic leg were tested at days 1 and 8 post-stroke in Cohort I and at days 3 and 9 in Cohort II. Independent gait was assessed 3 months after symptom onset. The performance of the model in terms of discrimination (area under the receiver operator characteristic (ROC) curve; AUC), classification, and calibration was assessed. Results: In Cohort I [N = 39, median age: 74 years, 33% women, median National Institutes of Health Stroke Scale (NIHSS) 9], the AUC (95% confidence interval (CI)] was 0.675 (0.510, 0.841) on day 1 and 0.921 (0.811, 1.000) on day 8. For Cohort II (N = 78, median age: 69 years, 37% women, median NIHSS 8), this was 0.801 (0.684, 0.918) on day 3 and 0.846 (0.741, 0.951) on day 9. Discussion and Conclusion: External validation of the EPOS prediction model for independent gait 3 months after stroke resulted in an acceptable performance from day 3 onward in mild-to-moderately affected patients with first-ever stroke without severe prestroke disability. The impact of applying this model in clinical practice should be investigated within this subgroup of patients with stroke. To improve the generalizability of patients with recurrent stroke and those with more severe, neurological comorbidities, the performance of the EPOS model within these patients should be determined across different geographical areas.

11.
J Neuroeng Rehabil ; 19(1): 2, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35016694

ABSTRACT

BACKGROUND: Upper limb kinematic assessments provide quantifiable information on qualitative movement behavior and limitations after stroke. A comprehensive characterization of spatiotemporal kinematics of stroke subjects during upper limb daily living activities is lacking. Herein, kinematic expressions were investigated with respect to different movement types and impairment levels for the entire task as well as for motion subphases. METHOD: Chronic stroke subjects with upper limb movement impairments and healthy subjects performed a set of daily living activities including gesture and grasp movements. Kinematic measures of trunk displacement, shoulder flexion/extension, shoulder abduction/adduction, elbow flexion/extension, forearm pronation/supination, wrist flexion/extension, movement time, hand peak velocity, number of velocity peaks (NVP), and spectral arc length (SPARC) were extracted for the whole movement as well as the subphases of reaching distally and proximally. The effects of the factors gesture versus grasp movements, and the impairment level on the kinematics of the whole task were tested. Similarities considering the metrics expressions and relations were investigated for the subphases of reaching proximally and distally between tasks and subgroups. RESULTS: Data of 26 stroke and 5 healthy subjects were included. Gesture and grasp movements were differently expressed across subjects. Gestures were performed with larger shoulder motions besides higher peak velocity. Grasp movements were expressed by larger trunk, forearm, and wrist motions. Trunk displacement, movement time, and NVP increased and shoulder flexion/extension decreased significantly with increased impairment level. Across tasks, phases of reaching distally were comparable in terms of trunk displacement, shoulder motions and peak velocity, while reaching proximally showed comparable expressions in trunk motions. Consistent metric relations during reaching distally were found between shoulder flexion/extension, elbow flexion/extension, peak velocity, and between movement time, NVP, and SPARC. Reaching proximally revealed reproducible correlations between forearm pronation/supination and wrist flexion/extension, movement time and NVP. CONCLUSION: Spatiotemporal differences between gestures versus grasp movements and between different impairment levels were confirmed. The consistencies of metric expressions during movement subphases across tasks can be useful for linking kinematic assessment standards and daily living measures in future research and performing task and study comparisons. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT03135093. Registered 26 April 2017, https://clinicaltrials.gov/ct2/show/NCT03135093 .


Subject(s)
Motor Disorders , Stroke , Biomechanical Phenomena , Humans , Movement , Stroke/complications , Upper Extremity , Wrist Joint
12.
J Rehabil Med ; 54: jrm00272, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34927210

ABSTRACT

INTRODUCTION: Many stroke survivors require continuous outpatient rehabilitation therapy to maintain or improve their neurological functioning, independ-ence, and quality of life. In Switzerland and many other countries, the shutdown to contain SARS-CoV-2 infections led to mobility restrictions and a decrease in therapy delivery. This study investigated the impact of the COVID-19 shutdown on stroke survivors' access to therapy, physical activity, functioning and mood. METHODS: A prospective observational cohort study in stroke subjects. At 4 time-points (before, during, after the shutdown, and at 3-month follow-up), the amount of therapy, physical activities, motor func-tion, anxiety, and depression were assessed. RESULTS: Thirty-six community-dwelling stroke subjects (median 70 years of age, 10 months post--stroke) were enrolled. Therapy reductions related to the shutdown were reported in 72% of subjects. This decrease was associated with significantly extended sedentary time and minimal deterioration in physical activity during the shutdown. Both parameters improved between reopening and 3-month follow-up. Depressive symptoms increased slightly during the observation period. Patients more frequently report-ed on self-directed training during shutdown. CONCLUSION: The COVID-19 shutdown had measurable immediate, but no persistent, effects on post--stroke outcomes, except for depression. Importantly, a 2-month reduction in therapy may trigger improvements when therapy is fully re-initiated thereafter.


Subject(s)
COVID-19 , Stroke Rehabilitation , Stroke , COVID-19/epidemiology , Humans , Infant , Prospective Studies , Quality of Life , SARS-CoV-2 , Switzerland
13.
Neurorehabil Neural Repair ; 36(2): 140-150, 2022 02.
Article in English | MEDLINE | ID: mdl-34937456

ABSTRACT

BACKGROUND: Learning and learning-related neuroplasticity in motor cortex are potential mechanisms mediating recovery of movement abilities after stroke. These mechanisms depend on dopaminergic projections from midbrain that may encode reward information. Likewise, therapist experience confirms the role of feedback/reward for training efficacy after stroke. OBJECTIVE: To test the hypothesis that rehabilitative training can be enhanced by adding performance feedback and monetary rewards. METHODS: This multicentric, assessor-blinded, randomized controlled trial used the ArmeoSenso virtual reality rehabilitation system to train 37 first-ever subacute stroke patients in arm-reaching to moving targets. The rewarded group (n = 19) trained with performance feedback (gameplay) and contingent monetary reward. The control group (n = 18) used the same system without monetary reward and with graphically minimized performance feedback. Primary outcome was the change in the two-dimensional reaching space until the end of the intervention period. Secondary clinical assessments were performed at baseline, after 3 weeks of training (15 1-hour sessions), and at 3 month follow-up. Duration and intensity of the interventions as well as concomitant therapy were comparable between groups. RESULTS: The two-dimensional reaching space showed an overall improvement but no difference between groups. The rewarded group, however, showed significantly greater improvements from baseline in secondary outcomes assessing arm activity (Box and Block Test at post-training: 6.03±2.95, P = .046 and 3 months: 9.66±3.11, P = .003; Wolf Motor Function Test [Score] at 3 months: .63±.22, P = .007) and arm impairment (Fugl-Meyer Upper Extremity at 3 months: 8.22±3.11, P = .011). CONCLUSIONS: Although neutral in its primary outcome, the trial signals a potential facilitating effect of reward on training-mediated improvement of arm paresis. TRIAL REGISTRATION: ClinicalTrials.gov (ID: NCT02257125).


Subject(s)
Exercise Therapy , Motor Activity/physiology , Recovery of Function/physiology , Reward , Stroke Rehabilitation , Stroke/therapy , Upper Extremity/physiopathology , Aged , Exercise Therapy/instrumentation , Exercise Therapy/methods , Female , Follow-Up Studies , Humans , Male , Middle Aged , Outcome Assessment, Health Care , Single-Blind Method , Stroke/physiopathology , Stroke Rehabilitation/instrumentation , Stroke Rehabilitation/methods , Virtual Reality
14.
Front Aging Neurosci ; 13: 730801, 2021.
Article in English | MEDLINE | ID: mdl-34744688

ABSTRACT

Purpose: Exergame training may be beneficial for improving long-term outcome in stroke patients. Personalized training prescription applying progression rules, is missing. We adapted a theory-based taxonomy for a rehabilitation approach using user-centered exergames. The aims were primarily to investigate the feasibility of this rehabilitation approach, and secondarily to evaluate its performance of personalizing training progression, as well as explore the effects on secondary outcomes. Methods: Chronic stroke patients (≥ 18 years) were included, who were able to walk 10 meters and stand for 3 min. The rehabilitation approach was administered twice per week for 8 weeks. As primary outcome, feasibility was evaluated by comparing achieved rates of inclusion, adherence, compliance, attrition, motivation, and satisfaction to pre-defined thresholds for acceptance. Secondary outcomes were (1) perceived motor and cognitive task difficulty throughout the intervention; (2) measures collected during baseline and post-measurements-a gait analysis, the Timed-up-and-go test (TUG), several cognitive tests assessing attentional, executive, and visuospatial functions. Results: Thirteen patients [median: 68.0 (IQR: 49.5-73.5) years, median: 34.5 (IQR: 12.25-90.75) months post-stroke] were included, of whom ten completed the study. Rates for inclusion (57%), adherence (95%), compliance (99%), motivation (77%), and satisfaction (74%) were acceptable, however, the attrition rate was high (23%). The perceived motor and cognitive task difficulty predominantly moved below the targeted range. We found a significant change in the TUG (p = 0.05, r = 0.46) and medium-to-large effect sizes (p > 0.05) for swing time of the affected leg, the asymmetry index, time needed for the Trail-making test (TMT) A and accuracy for the TMT B and the Mental Rotation Test (MRT; 0.26 ≤ r ≤ 0.46). Discussion: The intervention was feasible with minor modifications necessary, which warrants a larger trial investigating the effects of the rehabilitation approach following the adapted taxonomy on mobility, gait and cognitive functions. Two main limitations of the rehabilitation approach were; (1) the taxonomy decoupled motor and cognitive progression, which may be improper as motor and cognitive learning is coupled; (2) separate subjective ratings were used to guide the progression. Future studies should develop an instrument to objectively assess motor-cognitive task difficulty for monitoring the progression of an exergame-based training.

15.
Gigascience ; 10(6)2021 06 18.
Article in English | MEDLINE | ID: mdl-34143875

ABSTRACT

BACKGROUND: Shedding light on the neuroscientific mechanisms of human upper limb motor control, in both healthy and disease conditions (e.g., after a stroke), can help to devise effective tools for a quantitative evaluation of the impaired conditions, and to properly inform the rehabilitative process. Furthermore, the design and control of mechatronic devices can also benefit from such neuroscientific outcomes, with important implications for assistive and rehabilitation robotics and advanced human-machine interaction. To reach these goals, we believe that an exhaustive data collection on human behavior is a mandatory step. For this reason, we release U-Limb, a large, multi-modal, multi-center data collection on human upper limb movements, with the aim of fostering trans-disciplinary cross-fertilization. CONTRIBUTION: This collection of signals consists of data from 91 able-bodied and 65 post-stroke participants and is organized at 3 levels: (i) upper limb daily living activities, during which kinematic and physiological signals (electromyography, electro-encephalography, and electrocardiography) were recorded; (ii) force-kinematic behavior during precise manipulation tasks with a haptic device; and (iii) brain activity during hand control using functional magnetic resonance imaging.


Subject(s)
Robotics , Stroke Rehabilitation , Arm , Haptic Interfaces , Humans , Upper Extremity
16.
Front Bioeng Biotechnol ; 9: 652380, 2021.
Article in English | MEDLINE | ID: mdl-33937218

ABSTRACT

BACKGROUND: Robot-assisted therapy can increase therapy dose after stroke, which is often considered insufficient in clinical practice and after discharge, especially with respect to hand function. Thus far, there has been a focus on rather complex systems that require therapist supervision. To better exploit the potential of robot-assisted therapy, we propose a platform designed for minimal therapist supervision, and present the preliminary evaluation of its immediate usability, one of the main and frequently neglected challenges for real-world application. Such an approach could help increase therapy dose by allowing the training of multiple patients in parallel by a single therapist, as well as independent training in the clinic or at home. METHODS: We implemented design changes on a hand rehabilitation robot, considering aspects relevant to enabling minimally-supervised therapy, such as new physical/graphical user interfaces and two functional therapy exercises to train hand motor coordination, somatosensation and memory. Ten participants with chronic stroke assessed the usability of the platform and reported the perceived workload during a single therapy session with minimal supervision. The ability to independently use the platform was evaluated with a checklist. RESULTS: Participants were able to independently perform the therapy session after a short familiarization period, requiring assistance in only 13.46 (7.69-19.23)% of the tasks. They assigned good-to-excellent scores on the System Usability Scale to the user-interface and the exercises [85.00 (75.63-86.88) and 73.75 (63.13-83.75) out of 100, respectively]. Nine participants stated that they would use the platform frequently. Perceived workloads lay within desired workload bands. Object grasping with simultaneous control of forearm pronosupination and stiffness discrimination were identified as the most difficult tasks. DISCUSSION: Our findings demonstrate that a robot-assisted therapy device can be rendered safely and intuitively usable upon first exposure with minimal supervision through compliance with usability and perceived workload requirements. The preliminary usability evaluation identified usability challenges that should be solved to allow real-world minimally-supervised use. Such a platform could complement conventional therapy, allowing to provide increased dose with the available resources, and establish a continuum of care that progressively increases therapy lead of the patient from the clinic to the home.

17.
Neurorehabil Neural Repair ; 35(5): 393-405, 2021 05.
Article in English | MEDLINE | ID: mdl-33745372

ABSTRACT

BACKGROUND: Evidence from animal studies suggests that greater reductions in poststroke motor impairment can be attained with significantly higher doses and intensities of therapy focused on movement quality. These studies also indicate a dose-timing interaction, with more pronounced effects if high-intensity therapy is delivered in the acute/subacute, rather than chronic, poststroke period. OBJECTIVE: To compare 2 approaches of delivering high-intensity, high-dose upper-limb therapy in patients with subacute stroke: a novel exploratory neuroanimation therapy (NAT) and modified conventional occupational therapy (COT). METHODS: A total of 24 patients were randomized to NAT or COT and underwent 30 sessions of 60 minutes time-on-task in addition to standard care. The primary outcome was the Fugl-Meyer Upper Extremity motor score (FM-UE). Secondary outcomes included Action Research Arm Test (ARAT), grip strength, Stroke Impact Scale hand domain, and upper-limb kinematics. Outcomes were assessed at baseline, and days 3, 90, and 180 posttraining. Both groups were compared to a matched historical cohort (HC), which received only 30 minutes of upper-limb therapy per day. RESULTS: There were no significant between-group differences in FM-UE change or any of the secondary outcomes at any timepoint. Both high-dose groups showed greater recovery on the ARAT (7.3 ± 2.9 points; P = .011) but not the FM-UE (1.4 ± 2.6 points; P = .564) when compared with the HC. CONCLUSIONS: Neuroanimation may offer a new, enjoyable, efficient, and scalable way to deliver high-dose and intensive upper-limb therapy.


Subject(s)
Occupational Therapy/methods , Recovery of Function/physiology , Stroke Rehabilitation/methods , Stroke/therapy , Upper Extremity/physiopathology , Aged , Female , Humans , Male , Middle Aged , Outcome Assessment, Health Care , Patient Acuity , Single-Blind Method
18.
IEEE J Transl Eng Health Med ; 9: 2100211, 2021.
Article in English | MEDLINE | ID: mdl-33344099

ABSTRACT

BACKGROUND: Stroke is one of the main causes of disability in the world, causing loss of motor function on mainly one side of the body. A proper assessment of motor function is required to help to direct and evaluate therapy. Assessment is currently performed by therapists using observer-based standardized clinical assessment protocols. Sensor-based technologies can be used to objectively quantify the presence and severity of motor impairments in stroke patients. METHODS: In this work, a minimally obstructive distributed inertial sensing system, intended to measure kinematics of the upper extremity, was developed and tested in a pilot study, where 10 chronic stroke subjects performed the arm-related tasks from the Fugl-Meyer Assessment protocol with the affected and non-affected side. RESULTS: The pilot study showed that the developed distributed measurement system was adequately sensitive to show significant differences in stroke subjects' arm postures between the affected and non-affected side. The presence of pathological synergies can be analysed using the measured joint angles of the upper limb segments, that describe the movement patterns of the subject. CONCLUSION: Features measured by the system vary from the assessed FMA-UE sub-score showing its potential to provide more detailed clinical information.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Pilot Projects , Recovery of Function , Stroke/diagnosis , Upper Extremity
19.
J Neuroeng Rehabil ; 17(1): 128, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32977810

ABSTRACT

BACKGROUND: Assessing arm and hand sensorimotor impairments that are functionally relevant is essential to optimize the impact of neurorehabilitation interventions. Technology-aided assessments should provide a sensitive and objective characterization of upper limb impairments, but often provide arm weight support and neglect the importance of the hand, thereby questioning their functional relevance. The Virtual Peg Insertion Test (VPIT) addresses these limitations by quantifying arm and hand movements as well as grip forces during a goal-directed manipulation task requiring active lifting of the upper limb against gravity. The aim of this work was to evaluate the ability of the VPIT metrics to characterize arm and hand sensorimotor impairments that are relevant for performing functional tasks. METHODS: Arm and hand sensorimotor impairments were systematically characterized in 30 chronic stroke patients using conventional clinical scales and the VPIT. For the latter, ten previously established kinematic and kinetic core metrics were extracted. The validity and robustness of these metrics was investigated by analyzing their clinimetric properties (test-retest reliability, measurement error, learning effects, concurrent validity). RESULTS: Twenty-three of the participants, the ones with mild to moderate sensorimotor impairments and without strong cognitive deficits, were able to successfully complete the VPIT protocol (duration 16.6 min). The VPIT metrics detected impairments in arm and hand in 90.0% of the participants, and were sensitive to increased muscle tone and pathological joint coupling. Most importantly, significant moderate to high correlations between conventional scales of activity limitations and the VPIT metrics were found, thereby indicating their functional relevance when grasping and transporting objects, and when performing dexterous finger manipulations. Lastly, the robustness of three out of the ten VPIT core metrics in post-stroke individuals was confirmed. CONCLUSIONS: This work provides evidence that technology-aided assessments requiring goal-directed manipulations without arm weight support can provide an objective, robust, and clinically feasible way to assess functionally relevant sensorimotor impairments in arm and hand in chronic post-stroke individuals with mild to moderate deficits. This allows for a better identification of impairments with high functional relevance and can contribute to optimizing the functional benefits of neurorehabilitation interventions.


Subject(s)
Motor Disorders/diagnosis , Neurologic Examination/methods , Stroke/complications , Virtual Reality , Adult , Arm/physiopathology , Female , Hand/physiopathology , Humans , Male , Middle Aged , Motor Disorders/etiology , Neurologic Examination/instrumentation , Reproducibility of Results , Stroke/physiopathology , Task Performance and Analysis
20.
Sensors (Basel) ; 20(17)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32846958

ABSTRACT

Precise and objective assessments of upper limb movement quality after strokes in functional task conditions are an important prerequisite to improve understanding of the pathophysiology of movement deficits and to prove the effectiveness of interventions. Herein, a wearable inertial sensing system was used to capture movements from the fingers to the trunk in 10 chronic stroke subjects when performing reach-to-grasp activities with the affected and non-affected upper limb. It was investigated whether the factors, tested arm, object weight, and target height, affect the expressions of range of motion in trunk compensation and flexion-extension of the elbow, wrist, and finger during object displacement. The relationship between these metrics and clinically measured impairment was explored. Nine subjects were included in the analysis, as one had to be excluded due to defective data. The tested arm and target height showed strong effects on all metrics, while an increased object weight showed effects on trunk compensation. High inter- and intrasubject variability was found in all metrics without clear relationships to clinical measures. Relating all metrics to each other resulted in significant negative correlations between trunk compensation and elbow flexion-extension in the affected arm. The findings support the clinical usability of sensor-based motion analysis.


Subject(s)
Monitoring, Physiologic/methods , Stroke Rehabilitation , Stroke , Wearable Electronic Devices , Biomechanical Phenomena , Female , Humans , Male , Movement , Upper Extremity , Wrist Joint
SELECTION OF CITATIONS
SEARCH DETAIL
...