Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 24(57): 15303-15308, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30079553

ABSTRACT

This work reports the influence of molecular coverage in on-surface C-C-bond formation on reaction outcome. 6-Ethynyl-2-naphthoic acid (ENA) was chosen as organic component and Ag(111) as substrate. The alkyne moiety in ENA can either react by dimerization to ENA dimers (Glaser coupling or hydroalkynylation) or cyclotrimerization to generate a benzene core as connecting moiety. Dimer formation is preferred at high surface coverage whereas trimerization is the major reaction pathway at low coverage. Mechanistic studies are provided.

2.
J Am Chem Soc ; 139(20): 7012-7019, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28466640

ABSTRACT

Silylation and desilylation are important functional group manipulations in solution-phase organic chemistry that are heavily used to protect/deprotect different functionalities. Herein, we disclose the first examples of the σ-bond metathesis of silylated alkynes with aromatic carboxylic acids on the Ag(111) and Au(111) surfaces to give the corresponding terminal alkynes and silyl esters, which is supported by density functional theory calculations and further confirmed by X-ray photoelectron spectroscopy analysis. Such a protecting group strategy applied to on-surface chemistry allows self-assembly structures to be generated from molecules that are inherently unstable in solution and in the solid state. This is shown by the successful formation of self-assembled hexaethynylbenzene at Ag(111). Furthermore, it is also shown that on the Au(111) surface this σ-bond metathesis can be combined with Glaser coupling to fabricate covalent polymers via a cascade process.

3.
Chemistry ; 23(25): 6190-6197, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28211966

ABSTRACT

Possible origins of the formation of organometallic intermediates in on-surface Ullmann couplings have been investigated by surface tunneling microscopy (STM) and density functional theory (DFT) calculations. We consider the case of iodobenzenes on the coinage metals copper, silver, and gold. We found experimental evidence for the formation of surface vacancies and the presence of metal adatoms in these coupling reactions, which are taken as a hint for the reactive extraction of surface atoms by adsorbates. In a second step, we demonstrate by ab initio molecular dynamics calculations for aryl-iodides on copper that metal atoms can be pulled out of the surface to form metal-organic species. By contrast, a thermally activated provision of a metal atom from the surface to form an adatom is energetically unfavorable. Finally, we investigate the mechanism and energetics of the reactive extraction of surface metal atoms by means of (climbing-image) nudged elastic band density-functional theory calculations for iodobenzene on copper, silver, and gold, and analyze our results in the light of the experimental findings.

4.
Chemistry ; 23(25): 5874-5892, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28097707

ABSTRACT

In this Review article pioneering work and recent achievements in the emerging research area of on-surface chemistry is discussed. On-surface chemistry, sometimes also called two-dimensional chemistry, shows great potential for bottom-up preparation of defined nanostructures. In contrast to traditional organic synthesis, where reactions are generally conducted in well-defined reaction flasks in solution, on-surface chemistry is performed in the cavity of a scanning probe microscope on a metal crystal under ultrahigh vacuum conditions. The metal first acts as a platform for self-assembly of the organic building blocks and in many cases it also acts as a catalyst for the given chemical transformation. Products and hence success of the reaction are directly analyzed by scanning probe microscopy. This Review provides a general overview of this chemistry highlighting advantages and disadvantages as compared to traditional reaction setups. The second part of the Review then focuses on reactions that have been successfully conducted as on-surface processes. On-surface Ullmann and Glaser couplings are addressed. In addition, cyclodehydrogenation reactions and cycloadditions are discussed and reactions involving the carbonyl functionality are highlighted. Finally, the first examples of sequential on-surface chemistry are considered in which two different functionalities are chemoselectively addressed. The Review gives an overview for experts working in the area but also offers a starting point to non-experts to enter into this exciting new interdisciplinary research field.

5.
Phys Chem Chem Phys ; 18(39): 27390-27395, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27711645

ABSTRACT

With a combination of scanning tunneling microscopy and density functional theory, effects on molecular self-assembly involving two distinct chemical groups were investigated. We analyzed the influence of the individual functional units in the adsorbate and extracted the dominating contributions to the adsorption behaviour. The viability of such a systematic approach to study self-assembled structures by considering the interplay between substrate effects and molecular design is demonstrated.

6.
Angew Chem Int Ed Engl ; 55(33): 9777-82, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27410485

ABSTRACT

Herein we report the on-surface oxidative homocoupling of 6,6'-(1,4-buta-1,3-diynyl)bis(2-naphthoic acid) (BDNA) via bisacylperoxide formation on different Au substrates. By using this unprecedented dehydrogenative polymerization of a biscarboxylic acid, linear poly-BDNA with a chain length of over 100 nm was prepared. It is shown that the monomer BDNA can be prepared in situ at the surface via on-surface Glaser coupling of 6-ethynyl-2-naphthoic acid (ENA). Under the Glaser coupling conditions, BDNA directly undergoes polymerization to give the polymeric peroxide (poly-BDNA) representing a first example of an on-surface domino reaction. It is shown that the reaction outcome varies as a function of surface topography (Au(111) or Au(100)) and also of the surface coverage, to give branched polymers, linear polymers, or 2D metal-organic networks.

7.
Chem Commun (Camb) ; 51(23): 4887-90, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25705746

ABSTRACT

On-surface synthesis of a polyphenylene vinylene oligomer via reductive coupling of a terephthalaldehyde derivative on Au(111) is reported. Scanning tunneling microscopy and photoelectron spectroscopy experiments confirmed oxygen dissociation and its desorption from the surface. Density functional theory calculations provided a reasonable reaction mechanism involving reactive sites on the substrate.

8.
J Am Chem Soc ; 136(27): 9658-63, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24937642

ABSTRACT

Metal-catalyzed polymerization of 2,6-naphthalenedicarboxylic acid (NDCA) to form poly-2,6-naphthalenes at various surfaces is reported. Polymerizations occur via initial formal dehydrogenation of self-assembled diacids with subsequent decarboxylation to give polymeric bisnaphthyl-Cu species at elevated temperature as intermediate structures (<160 °C). Further temperature increase eventually leads to poly-naphthalenes via reductive elimination. It is demonstrated that the Cu(111) surface works most efficiently to conduct such polymerizations as compared to the Au(111), Ag(111), Cu(100), and Cu(110) surfaces. Poly-2,6-naphthalene with a chain length of over 50 nm is obtained by using this approach. The decarboxylative coupling of aromatic diacids is a very promising tool which further enlarges the portfolio of reactions allowing for on-surface polymerizations and novel organometallic systems preparations.

9.
ACS Nano ; 7(10): 8509-15, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24047459

ABSTRACT

We present [3 + 2] cycloaddition reactions between azides and alkynes on a Au(111) surface at room temperature and under ultrahigh vacuum conditions. High-resolution scanning tunneling microscopy images reveal that these on-surface cycloadditions occur highly regioselectively to form the corresponding 1,4-triazoles. Density functional theory simulations confirm that the reactions can occur at room temperature, where the Au(111) surface does not participate as a catalytic agent in alkyne C-H activation but acts solely as a two-dimensional constraint for the positioning of the two reaction partners. The on-surface azide-alkyne cycloaddition offers great potential toward the development and fabrication of functional organic nanomaterials on surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...