Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 303: 323-37, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26162236

ABSTRACT

Endocannabinoids (eCBs) are involved in a myriad of physiological processes that are mediated through the activation of cannabinoid receptors, which are ubiquitously distributed within the nervous system. One neurochemical target at which cannabinoids interact to have global effects on behavior is brain noradrenergic circuitry. We, and others, have previously shown that CB type 1 receptors (CB1r) are positioned to pre-synaptically modulate norepinephrine (NE) release in the rat frontal cortex (FC). Diacylglycerol lipase (DGL) is a key enzyme in the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). While DGL-α is expressed in the FC in the rat brain, it is not known whether noradrenergic afferents target neurons expressing synthesizing enzymes for the endocannabinoid, 2-AG. In the present study, we employed high-resolution neuroanatomical approaches to better define cellular sites for interactions between noradrenergic afferents and FC neurons expressing DGL-α. Immunofluorescence microscopy showed close appositions between processes containing the norepinephrine transporter (NET) or dopamine-ß-hydroxylase (DßH) and cortical neurons expressing DGL-α-immunoreactivity. Ultrastructural analysis using immunogold-silver labeling for DGL-α and immunoperoxidase labeling for NET or DßH confirmed that NET-labeled axon terminals were directly apposed to FC somata and dendritic processes that exhibited DGL-α-immunoreactivity. Finally, tissue sections were processed for immunohistochemical detection of DGL-α, CB1r and DßH. Triple label immunofluorescence revealed that CB1r and DßH were co-localized in common cellular profiles and these were in close association with DGL-α. Taken together, these data provide anatomical evidence for direct synaptic associations between noradrenergic afferents and cortical neurons exhibiting endocannabinoid synthesizing machinery.


Subject(s)
Cerebral Cortex/cytology , Endocannabinoids/metabolism , Neurons/metabolism , Neurons/ultrastructure , Norepinephrine/metabolism , Synapses/ultrastructure , Animals , Dendrites/diagnostic imaging , Dendrites/metabolism , Dopamine beta-Hydroxylase/metabolism , Lipoprotein Lipase/metabolism , Male , Microscopy, Electron, Transmission , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Oncorhynchus kisutch , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/metabolism , Synapses/metabolism , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...