Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21268324

ABSTRACT

IntroductionCOVID-19 vaccines significantly reduce SARS-CoV-2 (SCoV2)-related hospitalization and mortality in randomized controlled clinical trials, as well as in real-world effectiveness against different circulating SCoV2-lineages. However, some vaccine recipients show breakthrough infection and it remains unknown, which host and viral factors contribute to this risk and how many resulted in severe outcomes. Our aim was to identify demographic and clinical risk factors for SCoV2 breakthrough infections and severe disease in fully vaccinated individuals and to compare patient characteristics in breakthrough infections caused by SCoV2 Alpha or Delta variant. MethodsWe conducted an exploratory retrospective case-control study from 28th of December to 25th of October 2021 dominated by the Delta SCoV2 variant. All cases of infection had to be reported by law to the local health authorities. Vaccine recipients data was anonymously available from the national Vaccination Monitoring Data Lake and the main local vaccine center. We compared anonymized patients characteristics of breakthrough infection (n=492) to two overlapping control groups including all vaccine recipients from the Canton of Basel-City (group 1 n=126586 and group 2 n=109382). We also compared patients with breakthrough infection caused by the Alpha to Delta variant. We used different multivariate generalized linear models (GLM). ResultsWe found only 492/126586 (0.39%) vaccine recipients with a breakthrough infection after vaccination during the 10 months observational period. Most cases were asymptomatic or mild (478/492 97.2%) and only very few required hospitalization (14/492, 2.8%). The time to a positive SCoV2 test shows that most breakthrough infections occurred between a few days to about 170 days after full vaccination, with a median of 78 days (interquartile range, IQR 47-124 days). Factors associated with a lower odds for breakthrough infection were: age (OR 0.987, 95%CI 0.983-0.992), previous COVID-19 infection prior to vaccination (OR 0.296, 95%CI 0.117-0.606), and (self-declared) serious side-effects from previous vaccines (OR 0.289, 95%CI 0.033-1.035). Factors associated with a higher odds for breakthrough infection were: vaccination with the Pfizer/BioNTech vaccine (OR 1.459, 95%CI 1.238-1.612), chronic disease as vaccine indication (OR 2.109, 95%CI 1.692-2.620), and healthcare workers (OR 1.404, 95%CI 1.042-1.860). We did not observe a significantly increased risk for immunosuppressed patients (OR 1.248, 95% CI 0.806-1.849). ConclusionsOur study shows that breakthrough infections are rare and show mild illness, but that it occurs early after vaccination with more than 50% of cases within 70 to 80 days post-full vaccination. This clearly implies that boost vaccination should be much earlier initiated compared to the currently communicated 180-day threshold. This has important implications especially for risk groups associated with more frequent breakthrough infections such as healthcare workers, and people in high-risk care facilities. Due to changes in the epidemiological dynamic with new variants emerging, continuous monitoring of breakthrough infections is helpful to provide evidence on booster vaccines and patient groups at risk for potential complications.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20186155

ABSTRACT

BackgroundThe first case of SARS-CoV-2 in Basel, Switzerland, was detected on February 26th 2020. We present a phylogenetic longitudinal study and explore viral introduction and evolution during the exponential early phase of the local COVID-19 outbreak from February 26th until March 23rd. MethodsWe sequenced SARS-CoV-2 from naso-oropharyngeal swabs, generated 468 high quality genomes, and called variants with our COVID-19 Pipeline (COVGAP). We analysed viral genetic diversity using PANGOLIN taxonomic lineages. To identify introduction and dissemination events we incorporated global SARS-CoV-2 genomes and inferred a time-calibrated phylogeny. FindingsThe early outbreak in Basel was dominated by lineage B.1 (83{middle dot}6%), detected from March 2nd, although the first lineage identified was B.1.1. Within B.1, a clade containing 68{middle dot}2% of our samples, defined by the SNP C15324T, suggests local spreading events. We infer the geographic origin of this mutation to our tri-national region. The remaining genomes map broadly over the global phylogenetic tree, evidencing several events of introduction from and/or dissemination to other regions of the world. We also observe family transmission events. InterpretationA single lineage dominated the outbreak in the City of Basel while other lineages such as the first (B1.1) did not propagate. Thus spreading events seem to have contributed most to viral spread, while travel returners and family transmissions were better controlled by the recommended measures. This phylogenetic analysis enriches epidemiological and contact tracing data, allowing connection of seemingly unconnected events, and can inform public health interventions. FundingNo dedicated funding was used for this work.

SELECTION OF CITATIONS
SEARCH DETAIL
...