Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22269824

ABSTRACT

BackgroundThe risk of SARS-CoV-2 (SCoV2) infection in schools and student households is typically assessed using classical epidemiology whereby transmission is based on time of symptom onset and contact tracing data. Using such methodologies may be imprecise regarding transmission events of different, simultaneous SCoV2 variants spreading with different rates and directions in a given population. We analysed with high resolution the transmission among different communities, social networks, and educational institutions and the extent of outbreaks using whole genome sequencing (WGS). Methods and FindingsWe combined WGS and contact tracing spanning two pandemic waves from October 2020 to May 2021 in the Canton of Basel-City, Switzerland and performed an in-depth analysis of 235 cases relating to 22 educational institutions. We describe the caseload in educational institutions and the public health measures taken and delineate the WGS-supported outbreak surveillance. During the study period, 1,573 of 24,557 (6.4%) children and 410 of 3,726 (11%) staff members from educational institutions were reported SCoV2 positive. Thereof, WGS data from 83 children, 35 adult staff in 22 educational institutions and their 117 contacts (social network, families) was available and analysed. 353 contextual sequences from residents of the Canton of Basel-City sequenced through surveillance were identified to be related to cases in the educational institutions. In total, we identified 55 clusters and found that coinciding SCoV2-cases in individual educational institutions were mostly introduced from different sources such as social networks or the larger community. More transmission chains started in the community and were brought into the educational institutions than vice versa (31 vs. 13). Adolescents (12-19 years old) had the highest case prevalence over both waves compared to younger children or adults, especially for the emerging Alpha variant. ConclusionsIntroduction of SCoV2 into schools accounts for most events and reflects transmission closely related to social activity, whereby teenagers and young adults contribute to significant parallel activity. Combining WGS with contact tracing is pivotal to properly inform authorities about SCoV2 infection clusters and transmission directions in educational settings and the effectiveness of enacted public health measures. The gathered data showing more clusters to seed in the community than vice versa as well as few subsequent in-school transmissions indicate that the agilely employed health measures for educational institutions helped to prevent outbreaks among staff and children. The clinical trial accession number is NCT04351503 (clinicaltrials.gov).

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21266107

ABSTRACT

Genome sequences from evolving infectious pathogens allow quantification of case introductions and local transmission dynamics. We sequenced 11,357 SARS-CoV-2 genomes from Switzerland in 2020 - the 6th largest effort globally. Using a representative subset of these data, we estimated viral introductions to Switzerland and their persistence over the course of 2020. We contrast these estimates with simple null models representing the absence of certain public health measures. We show that Switzerlands border closures de-coupled case introductions from incidence in neighboring countries. Under a simple model, we estimate an 86 - 98% reduction in introductions during Switzerlands strictest border closures. Furthermore, the Swiss 2020 partial lockdown roughly halved the time for sampled introductions to die out. Finally, we quantified local transmission dynamics once introductions into Switzerland occurred, using a novel phylodynamic model. We find that transmission slowed 35 - 63% upon outbreak detection in summer 2020, but not in fall. This finding may indicate successful contact tracing over summer before overburdening in fall. The study highlights the added value of genome sequencing data for understanding transmission dynamics. One Sentence SummaryPhylogenetic and phylodynamic methods quantify the drop in case introductions and local transmission with implementation of public health measures.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20248663

ABSTRACT

Antiviral treatments for COVID-19 have involved many repurposed drugs. Currently, SARS-CoV-2 RNA-dependent RNA polymerase (RdRp, encoded by nsp12-nsp7-nsp8) has been targeted by numerous inhibitors with debated clinical impact. Among these, remdesivir has been conditionally approved for the treatment of COVID-19 patients. Although the emergence of antiviral resistance, an indirect proxy for antiviral efficacy, poses a considerable healthcare threat, an evolutionary perspective on emerging resistant mutants is still lacking. Here we show that SARS-CoV-2 RdRp is under purifying selection, that potential escape mutations are rare, and unlikely to lead to viral fitness loss. In more than 56,000 viral genomes from 105 countries dating from December 2019 to July 2020 we found negative selective pressure affecting nsp12 (Tajimas D = -2.62), with potential antiviral escape mutations in only 0.3% of sequenced genomes. Those affected known key residues, such as Nsp12:Val473 and Nsp12:Arg555. Of the potential escape mutations found globally, in silico structural models show that this rarely implies loss of stability in RdRp. No potential escape mutation were found in our local cohort of remdesivir treated patients from the first wave (n=8). Our results indicate that RdRp is a suitable drug target, and that remdesivir does not seem to exert high selective pressure. Our study could be the starting point of a larger monitoring effort of drug resistance throughout the COVID-19 pandemic. We recommend the application of repetitive genome sequencing of SARS-CoV-2 from patients treated with antivirals to provide early insights into the evolution or antiviral resistance.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20248130

ABSTRACT

BackgroundTransmission chains within small urban areas (accommodating[~]30% of the European population) greatly contribute to case burden and economic impact during the ongoing COVID-19 pandemic, and should be a focus for preventive measures to achieve containment. Here, at very high spatio-temporal resolution, we analysed determinants of SARS-CoV-2 transmission in a European urban area, Basel-City (Switzerland). Methodology. We combined detailed epidemiological, intra-city mobility, and socioeconomic data-sets with whole-genome-sequencing during the first SARS-CoV-2 wave. For this, we succeeded in sequencing 44% of all reported cases from Basel-City and performed phylogenetic clustering and compartmental modelling based on the dominating viral variant (B.1-C15324T; 60% of cases) to identify drivers and patterns of transmission. Based on these results we simulated vaccination scenarios and corresponding healthcare-system burden (intensive-care-unit occupancy). Principal Findings. Transmissions were driven by socioeconomically weaker and highly mobile population groups with mostly cryptic transmissions, whereas amongst more senior population transmission was clustered. Simulated vaccination scenarios assuming 60-90% transmission reduction, and 70-90% reduction of severe cases showed that prioritizing mobile, socioeconomically weaker populations for vaccination would effectively reduce case numbers. However, long-term intensive-care-unit occupation would also be effectively reduced if senior population groups were prioritized, provided there were no changes in testing and prevention strategies. Conclusions. Reducing SARS-CoV-2 transmission through vaccination strongly depends on the efficacy of the deployed vaccine. A combined strategy of protecting risk groups by extensive testing coupled with vaccination of the drivers of transmission (i.e. highly mobile groups) would be most effective at reducing the spread of SARS-CoV-2 within an urban area. Author summaryWe examined SARS-CoV-2 transmission patterns within a European city (Basel, Switzerland) to infer drivers of the transmission during the first wave in spring 2020. The combination of diverse data (serological, genomic, transportation, socioeconomic) allowed us to combine phylogenetic analysis with mathematical modelling on related cases that were mapped to a residential address. As a result we could evaluate population groups driving SARS-CoV-2 transmission and quantify their effect on the transmission dynamics. We found traceable transmission chains in wealthier or more senior population groups and cryptic transmissions in the mobile, young or socioeconomic weaker population groups - these were identified as transmission drivers of the first wave. Based on this insight, we simulated vaccination scenarios for various vaccine efficacies to reflect different approaches undertaken to handle the epidemic. We conclude that vaccination of the mobile inherently younger population group would be most effective to handle following waves.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20212621

ABSTRACT

Pathogen genomes provide insights into their evolution and epidemic spread. We sequenced 1,439 SARS-CoV-2 genomes from Switzerland, representing 3-7% of all confirmed cases per week. Using these data, we demonstrate that no one lineage became dominant, pointing against evolution towards general lower virulence. On an epidemiological level, we report no evidence of cryptic transmission before the first confirmed case. We find many early viral introductions from Germany, France, and Italy and many recent introductions from Germany and France. Over the summer, we quantify the number of non-traceable infections stemming from introductions, quantify the effective reproductive number, and estimate the degree of undersampling. Our framework can be applied to quantify evolution and epidemiology in other locations or for other pathogens based on genomic data. One Sentence SummaryWe quantify SARS-CoV-2 spread in Switzerland based on genome sequences from our nation-wide sequencing effort.

SELECTION OF CITATIONS
SEARCH DETAIL
...