Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Food Chem ; 456: 139945, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38850604

ABSTRACT

This study investigated the potential of incorporating cardoon (Cynara cardunculus L.) blades as bioactive and dietary fiber ingredients in vegetable/fruit-based smoothies, within a zero-waste approach. The smoothie formulations were pasteurized by high-pressure (550 MPa for 3 min, HPP) and thermal (90 °C for 30 s, TP) treatments and stored at 4 °C for 50 days. Cardoon-fortified smoothies exhibited higher viscosity, darker color, increased phenolic compound levels, and greater anti-inflammatory and antioxidant activities. Furthermore, the cardoon blade ingredients contributed to a more stable dietary fiber content throughout the smoothies' shelf-life. HPP-processed smoothies did not contain sucrose, suggesting enzymatic activity that resulted in sucrose hydrolysis. All beverage formulations had low or no microbial growth within European limits. In conclusion, the fortification of smoothies with cardoon blades enhanced bioactive properties and quality attributes during their shelf-life, highlighting the potential of this plant material as a potential functional food ingredient in a circular economy context.

2.
Pharmaceuticals (Basel) ; 17(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38794166

ABSTRACT

Cistus ladanifer L., Acacia dealbata L., and Aloysia citrodora Paláu were subject to an optimization procedure for two extraction techniques (heat-assisted extraction (HAE) and ultrasound-assisted extraction (UAE)). The extracts were then analyzed by HPLC-DAD-ESI/MS for their phenolic profile (cistus-15 compounds, acacia-21 compounds, and lemon verbena-9 compounds). The response surface methodology was applied, considering four varying factors: ethanol percentage; extraction time; temperature/power; and S/L ratio, generating two responses (the major phenolic compound, or family of compounds, and the extraction yield). For cistus, both techniques optimized the extraction yield of punicalagins, with UAE proving to be the most efficient extraction method (3.22% ethanol, 22 min, 171 W, and 35 g/L). For acacia, HAE maximized the extraction of procyanidin (74% ethanol, 86 min, 24 °C, and 50 g/L), and UAE maximized the content of myricetin (65% ethanol, 8 min, 50 W, and 50 g/L). For lemon verbena, HAE favored the extraction of martynoside (13% ethanol, 96 min, 49 °C and 17 g/L) and forsythiaside UAE (94% ethanol, 25 min, 399 W, and 29 g/L). The optimal conditions for the extraction of compounds with high added value and potential for use in pharmaceuticals and nutraceuticals were defined.

3.
Antibiotics (Basel) ; 13(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786121

ABSTRACT

Chronic diseases (CD) may result from a combination of genetic factors, lifestyle and social behaviours, healthcare system influences, community factors, and environmental determinants of health. These risk factors frequently coexist and interact with one another. Ongoing research and a focus on personalized interventions are pivotal strategies for preventing and managing chronic disease outcomes. A wealth of literature suggests the potential involvement of gut microbiota in influencing host metabolism, thereby impacting various risk factors associated with chronic diseases. Dysbiosis, the perturbation of the composition and activity of the gut microbiota, is crucial in the etiopathogenesis of multiple CD. Recent studies indicate that specific microorganism-derived metabolites, including trimethylamine N-oxide, lipopolysaccharide and uremic toxins, contribute to subclinical inflammatory processes implicated in CD. Various factors, including diet, lifestyle, and medications, can alter the taxonomic species or abundance of gut microbiota. Researchers are currently dedicating efforts to understanding how the natural progression of microbiome development in humans affects health outcomes. Simultaneously, there is a focus on enhancing the understanding of microbiome-host molecular interactions. These endeavours ultimately aim to devise practical approaches for rehabilitating dysregulated human microbial ecosystems, intending to restore health and prevent diseases. This review investigates how the gut microbiome contributes to CD and explains ways to modulate it for managing or preventing chronic conditions.

4.
Foods ; 13(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38790736

ABSTRACT

Duckweed (Lemna minor L.) is a small floating aquatic plant that has an important economic impact in several industrial areas. With its high biomass production, reasonable protein content, and resilience to several climates, it has been attracting increasing interest for potential use in animal and human food systems. Historically consumed in southwest Asia, this duckweed is now gaining attention as a potential novel food in Europe. This manuscript explores the contributions of duckweed to various food and feed industries, including aquaculture and livestock, while also pointing out the incipient research carried out for human consumption. Most importantly, it highlights the potential of Lemna minor as a vegetable for future human consumption whether eaten whole or through extraction of its nutrients.

5.
Food Funct ; 15(12): 6289-6303, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38805010

ABSTRACT

While the market is full of different dietary supplements, in most countries, legislation is clear and strict towards these products, with severe limitations on their health claims. Overall, the claims cannot go beyond the consumption of a said supplement will contribute to a healthy diet. Thus, the supplement industry has been reacting and changing their approach to consumers. One change is the considerable growth of the nutraceutical market, which provides naturally produced products, with low processing and close to no claims on the label. The marketing of this industry shifts from claiming several benefits on the label (dietary supplements) to relying on the knowledge of consumers towards the benefits of minimally processed foods filled with natural products (nutraceuticals). This review focuses on the difference between these two products, their consumption patterns, forms of presentation, explaining what makes them different, their changes through time, and their most notable ingredients, basically balancing out their pros and cons.


Subject(s)
Dietary Supplements , Humans , Food Labeling/legislation & jurisprudence
6.
Food Chem ; 438: 137976, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-37980870

ABSTRACT

Pansy and viola edible flowers were grown hydroponically with different levels of Mg and Mn. The nutritional composition was determined using standard methods. Free sugars, fatty acids, organic acids, tocopherols, and phenolic compounds were analyzed using various HPLC and GC devises. The extract's antimicrobial, antioxidant, cytotoxicity, and anti-inflammatory activity were assessed. The results indicated that Mg enrichment negatively affected plant growth and mineral accumulation but improved photosynthetic performance. The edible flowers contained significant amounts of protein, low levels of fat, and varying sugar contents, such as glucose and fructose. Various fatty acids and phenolic compounds were identified, with different concentrations depending on the treatment. The flowers exhibited antioxidant potential, antimicrobial activity, cytotoxic effects, and anti-inflammatory properties. The correlations between the investigated parameters not only expand knowledge on Mg and Mn interaction but also catalyze significant advancements in sustainable agriculture and food health, fostering a healthier and more conscious future.


Subject(s)
Anti-Infective Agents , Viola , Antioxidants/chemistry , Viola/chemistry , Magnesium/analysis , Manganese/analysis , Flowers/chemistry , Phenols/analysis , Fatty Acids/analysis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/analysis , Anti-Inflammatory Agents/analysis , Plant Extracts/chemistry
7.
Molecules ; 28(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37959787

ABSTRACT

BACKGROUND: Grape agri-food wastes, such as skin, seeds, and other discarded by-products, contain phytochemical compounds that offer potential health benefits. METHODS: This study aimed to investigate the polyphenol composition and bioactivities of different extracts obtained from grape marc and seeds, with the goal of exploring their potential for application as natural food additives. RESULTS: Regardless of the extraction method used (dynamic maceration, ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE)), all extracts exhibited relatively high concentrations of phenolic compounds. The chemical characterization of the extracts revealed the presence of specific compounds and chemical groups associated with each extraction methodology. Moreover, the extracts displayed satisfactory antioxidant activities, especially in inhibiting lipoperoxidation as assessed by the TBARS assay. Additionally, the extracts demonstrated effective inhibition against different strains of bacteria and fungi known as food contaminants. Taken together, these findings indicate that those extracts have the potential to be tested as natural antioxidants and preservatives with sustainable origins in food and beverage systems. Among the extraction methods evaluated, traditional maceration and UAE provided extracts with the highest antioxidant and antimicrobial activities. CONCLUSIONS: Our results suggest the opportunity to explore grape marc and seeds discarded by the winery industry in Portugal as natural sources of bioactive compounds, which could be employed as functional food ingredients or technological additives. The valorization of grape biowastes offers a promising strategy to reduce waste and harness their potential health benefits.


Subject(s)
Refuse Disposal , Vitis , Polyphenols/chemistry , Vitis/chemistry , Antioxidants/chemistry , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Plant Extracts/chemistry , Seeds/chemistry
8.
Int J Food Microbiol ; 407: 110425, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-37804776

ABSTRACT

Aspergillus carbonarius (Bainier) Thom. is an important pathogen and ochratoxin A (OTA) producer in grapes that can be controlled by adopting sustainable approaches. Here we evaluate the application of natural plant extracts as an alternative to synthetic fungicides to reduce OTA contamination and to prevent infection of grapes by two isolates of A. carbonarius. In a preliminary screening, natural extracts of chestnut flower, cistus, eucalyptus, fennel, and orange peel were evaluated for their antifungal and anti-mycotoxigenic efficiency in a grape-based medium at concentrations of 10 and 20 mg/mL. Cistus and orange peel extracts demonstrated the best antifungal activity at both concentrations. Although the eucalyptus extract demonstrated no significant effect on Aspergillus vegetative growth, it significantly reduced OTA by up to 85.75 % at 10 mg/mL compared to the control. Chestnut flower, cistus, eucalyptus, and orange peel extracts were then tested at the lowest concentration (10 mg/mL) for their antifungal activity in artificially inoculated grape berries. The cistus and orange peel extracts demonstrated the greatest antifungal activity and significantly reduced mold symptoms in grapes. Moreover, all tested natural extracts were able to reduce OTA content in grape berries (17.7 ± 8.3 % - 82.3 ± 3.85 % inhibition), although not always significantly. Eucalyptus extract was particularly efficient, inhibiting OTA production by both strains of A. carbonarius by up to >80 % with no effects on fungal growth. The use of natural eucalyptus extract represents a feasible strategy to reduce OTA formation without disrupting fungal growth, apparently maintaining the natural microbial balance, while cistus and orange peel extracts appear promising as inhibitors of A. carbonarius mycelial growth. Our findings suggest that plant extracts may be useful sources of bioactive chemicals for preventing A. carbonarius contamination and OTA production. Nonetheless, it will be necessary to evaluate their effect on the organoleptic properties of the grapes.


Subject(s)
Ochratoxins , Vitis , Vitis/microbiology , Antifungal Agents/pharmacology , Plant Extracts/pharmacology , Aspergillus
9.
Food Funct ; 14(19): 8775-8784, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37606616

ABSTRACT

The aim of this study was to assess the performance and stability of betacyanin compounds present in enriched extracts of red-fleshed pitaya peels (Hylocereus costaricensis) and the flowers of Amaranthus caudatus; they were evaluated as natural food colorants in tagliatelle pasta and meringue cookies. The recovered natural extracts showed promising stability, maintaining a deep pink color over a storage time of 14 days, without deeply changing the chemical composition. A number of factors were assessed, including the microbial load, texture, color, nutritional value, and contents of organic acids, fatty acids, and even free sugars of the products. Some significant interactions between the type of colorant and storage time contributed to the changes in some analyzed parameters, as can be observed from the results for organic and fatty acids in the tagliatelle pasta and meringue cookies. Another significant achievement was the reduction in the microbial load during the storage time, which strengthens the antibacterial power of these natural extracts.


Subject(s)
Amaranthus , Betacyanins , Cactaceae , Food Coloring Agents , Plant Extracts , Amaranthus/chemistry , Antioxidants/chemistry , Betacyanins/chemistry , Cactaceae/chemistry , Food Additives , Plant Extracts/chemistry , Plant Extracts/pharmacology
10.
Plants (Basel) ; 12(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37570937

ABSTRACT

Consumer demand for natural and healthier products has led to an increasing interest in the bioactive and therapeutic properties of plant extracts. In this study, we evaluated the phenolic compounds profile, bioactivities, and toxicities of plant extracts from eight European flora species, including Calendula officinalis L., Calluna vulgaris (L.) Hull, Hippophae rhamnoides L., Juglans regia L., Mentha cervina L., Rubus idaeus L., Sambucus nigra L., and Vitis vinifera L. The aim was to identify potential preservatives of natural origin. Phenolic compounds were identified by HPLC-DAD-ESI-MS. Caffeic acid derivatives, ellagitannins, flavonols, and flavones were the major phenolic compounds identified. The total phenolic content varied from 16.0 ± 0.2 (V. vinifera) to 123 ± 2 mg/g (H. rhamnoides) of dry extract. All extracts showed antioxidant potential and exhibited activity against some of the microorganisms tested. S. nigra showed the highest activity in the inhibition of oxidative hemolysis (OxHLIA) assay and H. rhamnoides, notably, had the lowest IC50 values in TBARS and DPPH assays, as well as the lowest minimum inhibitory concentration (MIC) values. Regarding in vitro cytotoxicity, in tumor and non-tumor cell lines, although some extracts revealed toxicity against normal cells, it was found that the samples C. vulgaris, V. vinifera and R. idaeus might be used against tumor cells since the active concentration is much lower than the one causing toxicity. In vivo acute toxicity tests using Artemia franciscana suggest low toxicity for most extracts, with LC50 > 400 mg/L. These results showed the potential of the studied extracts as natural preservatives, given their richness in compounds with bioactive properties, highlight their potential value to the production chain.

11.
Foods ; 12(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37444334

ABSTRACT

Opportunities for the valorisation of agro-industrial residues of the chestnut (Castanea sativa Mill.) production chain have been fostered with the production of multifunctional polyphenol-rich extracts with the potential to be introduced as natural additives or active components in several products. Nonetheless, it is crucial to explore the feasibility of different extracts from the various by-products for these applications through the exhaustive study of their composition and bioactivities without losing sight of the sustainable character of the process. This work aimed at the screening of the phenolic compound composition and bioactivities of different green extracts of chestnut burs, shells and leaves, as the first step to establish their potential application as natural ingredients, primarily as food preservatives. To this end, maceration (MAC) as a conventional extraction method besides ultrasound and microwave-assisted extractions (UAE and MAE) was employed to obtain the extracts from chestnut by-products using water (W) and hydroethanolic solution (HE) as solvents. Phenolic compounds were analysed by HPLC-DAD-(ESI-)MS/MS; the antioxidant capacity was assessed by colourimetric assays, and the antimicrobial activity was evaluated against several strains of food-borne bacteria and fungi. The leaf extracts obtained by MAC-HE and UAE-HE presented the highest concentration of phenolic compounds (70.92 ± 2.72 and 53.97 ± 2.41 mg.g-1 extract dw, respectively), whereas, for burs and shells, the highest recovery of total phenolic compounds was achieved by using UAE-HE and UAE-W (36.87 ± 1.09 and 23.03 ± 0.26 mg.g-1 extract dw, respectively). Bis-HHDP-glucose isomers, chestanin and gallic acid were among the most abundant compounds. Bur extracts (MAC-HE and UAE-HE) generally presented the highest antioxidant capacity as measured by TBARS, while the best results in DPPH and reducing power assays were found for shell extracts (MAE-W and MAC-HE). Promising antibacterial activity was noticed for the aqueous extracts of burs, leaves and hydroethanolic extracts of shells, with emphasis on the MAE-W extract of burs that showed bactericidal activity against E. cloacae, P. aeruginosa and S. aureus (MBC 5 mg.mL-1). Overall, it can be concluded that chestnut by-products, including burs, shells and leaves, are sources of polyphenolic compounds with significant antioxidant and antimicrobial activities. The choice of extraction method and solvent greatly influenced the composition and bioactivity of the extracts. These findings highlight the potential of chestnut by-products for the development of natural additives, particularly for food preservation, while also emphasizing the importance of sustainable utilization of agricultural waste materials. Further research is warranted to optimize extraction techniques and explore additional applications for these valuable bioactive compounds.

12.
Food Res Int ; 170: 113044, 2023 08.
Article in English | MEDLINE | ID: mdl-37316092

ABSTRACT

The present study aims to determine the combined effect of cropping system and irrigation regime on the chemical composition and bioactive properties of lemon balm aerial parts. For this purpose, lemon balm plants were grown under two farming systems (conventional farming vs organic farming) and two irrigation levels (full irrigation vs deficit irrigation) and harvested twice throughout the growing period. The collected aerial parts were subjected to three different methods of extractions, namely infusion, maceration and ultrasound-assisted extraction and the obtained extracts were evaluated in terms of chemical profile and bioactivities. Five organic acids with varied composition among the tested treatments were identified in all the tested samples for both harvests, namely, citric, malic, oxalic, shikimic and quinic acid. Regarding phenolic compounds composition, the most abundant ones were rosmarinic acid, lithospermic acid A isomer I and hydroxylsalvianolic E, especially for the maceration and infusion extraction methods. Full irrigation resulted in lower EC50 values than deficit irrigation only in the treatments of the second harvest, while variable cytotoxic and anti-inflammatory effects were recorded in both harvests. Finally, in most cases the lemon balm extracts has similar or better activity than the positive controls, while the antifungal activity of lemon balm extracts was stronger than the antibacterial effects. In conclusion, the results of the present study showed that the implemented agronomic practices, as well as the extraction protocol may significantly affect the chemical profile and bioactivities of lemon balm extracts, suggesting that both the farming system and the irrigation schedule may improve the quality of the extracts depending on the implemented extraction protocol.


Subject(s)
Melissa , Agriculture , Farms , Anti-Bacterial Agents , Plant Extracts/pharmacology
13.
Food Funct ; 14(13): 6023-6035, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37312612

ABSTRACT

This work proposes the application of astaxanthin-rich H. pluvialis wet paste (HPW) as a partial substitute for wheat flour in the preparation of filloas, a dish that combines the basic ingredients of industrial bakery. The nutritional and color profile of HPW-enriched samples was evaluated by comparative analysis with a mixture of synthetic food dyes. The highest content of carotenoids (798 ± 12 µg g-1) and fatty acids (76 ± 2 mg g-1) was obtained for a filloa fortified with H. pluvialis in contrast to a non-significant dye response. Subsequently, the color stability of the fortified filloa was evaluated over time (3, 6 and 9 days), as well as its physicochemical properties and microbiological profile. As a result, HPW provided filloas with a longer shelf life, brightness (*L), and texture, in comparison with a mixture of synthetic dyes. In addition, an inhibitory effect of HPW towards mesophilic aerobic microorganisms in the food was obtained.


Subject(s)
Microalgae , Microalgae/chemistry , Flour , Triticum , Coloring Agents , Sensation
15.
Molecules ; 28(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37241749

ABSTRACT

Juniperus communis L. is a species commonly grown in regions of the Northern Hemisphere, and is a good candidate to be cultivated in marginal lands. Plants coming from a pruning performed in a natural population located in Spain were used to assess the yield and quality of different products obtained following the cascade principle. A total of 1050 kg of foliage biomass were crushed, steam-distilled, and separated into fractions to produce biochar and absorbents for the pet industry using pilot plants. The obtained products were analysed. The essential oil, with a yield of 0.45% dry basis and a qualitative chemical composition similar to that described for the berries in international standards or monographs, showed antioxidant activity with promising CAA results (inhibition of 89% of the cell's oxidation). However, regarding antibacterial and antifungal activities, it only inhibited the growth of microorganisms at the maximum concentration tested, 2.5%. Concerning the hydrolate, it did not show bioactivity. Regarding the biochar, whose yield was 28.79% dry basis, interesting results were obtained for its characterisation as a possible soil improver for agronomic purposes (PFC 3(A)). Finally, promising results were obtained regarding the use of common juniper as absorbent, taking into account the physical characterisation and odour control capacity.


Subject(s)
Juniperus , Oils, Volatile , Juniperus/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antifungal Agents/pharmacology
16.
Curr Pharm Des ; 29(11): 837-851, 2023.
Article in English | MEDLINE | ID: mdl-37038293

ABSTRACT

Infectious diseases have always been a concern for human health, responsible for numerous pandemics throughout history. Even with the advancement of medicine, new infectious diseases have been discovered over the years, requiring constant effort in medical research to avoid future problems. Like the emergence of new diseases, the increase in resistance of certain bacterial strains also becomes a concern, carried out through the misuse of antibiotics, generating the adaptation of certain microorganisms. Worldwide, the resistance developed by several bacterial strains is growing exponentially, creating awareness and developing novel strategies to control their evolution a mandatory research topic. Methicillin-resistant Staphylococcus aureus (MRSA) is an example of a bacterial strain that causes serious and mortal infections. The fact is that this bacterial strain started to develop resistance against commonly used antibiotics, first to penicillin and against methicillin. Thus, the treatment against infections caused by MRSA is limited and difficult due to its capacity to develop defense mechanisms against the antibiotic's action. Given the urgency to find new alternatives, the scientific community has been developing interesting research regarding the exploitation of natural resources to discover bioactive molecules that are able to inhibit/kill MRSA. In this sense, several natural matrices, namely plants, have shown great potential against MRSA, due to the presence of phenolic compounds, molecules with high antimicrobial capacity due to their chemical structure and arrangement.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Methicillin , Penicillins , Microbial Sensitivity Tests
17.
Life (Basel) ; 13(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36836744

ABSTRACT

The recent pandemic of COVID-19 caused by the SARS-CoV-2 virus has brought upon the world an unprecedented challenge. During its acute dissemination, a rush for vaccines started, making the scientific community come together and contribute to the development of efficient therapeutic agents and vaccines. Natural products have been used as sources of individual molecules and extracts capable of inhibiting/neutralizing several microorganisms, including viruses. Natural extracts have shown effective results against the coronavirus family, when first tested in the outbreak of SARS-CoV-1, back in 2002. In this review, the relationship between natural extracts and SARS-CoV is discussed, while also providing insight into misinformation regarding the use of plants as possible therapeutic agents. Studies with plant extracts on coronaviruses are presented, as well as the main inhibition assays and trends for the future regarding the yet unknown long-lasting effects post-infection with SARS-CoV-2.

18.
Food Funct ; 13(15): 8243-8253, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35833660

ABSTRACT

"Económicos" are traditional Portuguese pastry products; although their production is low-cost, their nutritional value is equally low. Since it is a widely consumed product in the Trás-os-Montes region, it is important to add value to it without making significant changes to the traditional recipe. Thus, this work has the main objective to increase the nutritional power of "económicos" through the incorporation of chestnut (Castanea sativa) fruit flour. The influence of the incorporation of 9% of chestnut flour as a new ingredient was analysed in terms of physical parameters (texture, colour, pH, water activity and moisture), nutritional content (according to the official AOAC methodology) and chemical parameters (sugars, fatty acids and organic acids) and the ability to control the microbial load over shelf life (32 days). Overall, the addition of the chestnut flour did not drastically change the appearance of the chemical and physical profiles of the cakes, but resulted in a lighter crumb (L*), slight changes in the texture profile, reduction of fat, and most importantly, introduced healthier flour to this inexpensive cake. Moreover, it did not stimulate the growth of microorganisms (total aerobic mesophiles, coliforms, Bacillus cereus, molds, and yeasts) during the 32 days of storage.


Subject(s)
Fagaceae , Flour , Fagaceae/chemistry , Flour/analysis , Nutritive Value , Nuts , Portugal
19.
Food Funct ; 13(9): 5442-5454, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35475440

ABSTRACT

The plant kingdom is an endless source of molecules that can be applied in almost all realms of society. The food industry has profited from the use of plants and their derived materials for many decades. Recently, the food industry has been looking into plants to find different ways of either preserving, coloring or sweetening foods. In this work, leaf extracts of Arbutus unedo L. obtained by dynamic maceration and ultrasound assisted extraction with prior optimization of their extraction conditions through the response-surface methodology, were incorporated in quark cheese as natural preservatives and analyzed over 8 days of shelf-life. Both extracts showed antioxidant activity with no toxicity towards primary cell lines at the maximum tested concentration, as well as antibacterial activity, especially against Gram-positive strains. After their incorporation in quark cheese, no significant changes were observed in the nutritional profile and physical traits of the quark cheeses, while the microbial load was highly reduced in the cheese, especially using the extracts obtained from dynamic maceration. Thus, leaf extracts of A. unedo can be promising candidates for use in the food industry as natural preservatives.


Subject(s)
Cheese , Ericaceae , Antioxidants , Plant Extracts/pharmacology
20.
Food Chem ; 386: 132778, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35344720

ABSTRACT

The efficiency of the microwave-assisted extraction (MAE) technique on recovering nutritional and bioactive oils from salmon (Salmo salar) side streams was evaluated and compared to Soxhlet extraction. The response surface methodology (RSM) coupled with a central composite rotatable design was used to optimize time, microwave power, and solid/liquid ratio of the MAE process in terms of oil yield. The optimal MAE conditions were 14.6 min, 291.9 W, 80.1 g/L for backbones, 10.8 min, 50.0 W, 80.0 g/L for heads, and 14.3 min, 960.6 W, 99.5 g/L for viscera, which resulted in a recovery of 69% of the total lipid content for backbones and heads and 92% for viscera. The oils obtained under optimal MAE conditions showed a healthy lipid profile as well as cytotoxic, antioxidant, anti-inflammatory, or antimicrobial properties. These results highlight that oils from underutilized salmon by-products could be exploited by different industrial sectors under the circular economy approach.


Subject(s)
Microwaves , Salmo salar , Animals , Antioxidants/analysis , Oils , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...