Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroendocrinol ; 28(3): 12368, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26802435

ABSTRACT

Wnt signalling and its downstream effectors are well known for their roles in embryogenesis and tumourigenesis, including the regulation of cell proliferation, survival and differentiation. In the nervous system, Wnt signalling has been described mainly during embryonic development, although accumulating evidence suggests that it also plays a major role in adult brain morphogenesis and function. Studies have predominantly concentrated on memory formation in the hippocampus, although recent data indicate that Wnt signalling is also critical for neuroendocrine control of the developed hypothalamus, a brain centre that is key in energy balance regulation and whose dysfunction is implicated in metabolic disorders such as type 2 diabetes and obesity. Based on scattered findings that report the presence of Wnt molecules in the tanycytes and ependymal cells lining the third ventricle and arcuate nucleus neurones of the hypothalamus, their potential importance in key regions of food intake and body weight regulation has been investigated in recent studies. The present review brings together current knowledge on Wnt signalling in the hypothalamus of adult animals and discusses the evidence suggesting a key role for members of the Wnt signalling family in glucose and energy balance regulation in the hypothalamus in diet-induced and genetically obese (leptin deficient) mice. Aspects of Wnt signalling in seasonal (photoperiod sensitive) rodents are also highlighted, given the recent evidence indicating that the Wnt pathway in the hypothalamus is not only regulated by diet and leptin, but also by photoperiod in seasonal animals, which is connected to natural adaptive changes in food intake and body weight. Thus, Wnt signalling appears to be critical as a modulator for normal functioning of the physiological state in the healthy adult brain, and is also crucial for normal glucose and energy homeostasis where its dysregulation can lead to a range of metabolic disorders.


Subject(s)
Energy Metabolism , Hypothalamus/metabolism , Wnt Signaling Pathway/physiology , Adult , Animals , Appetite Regulation/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Energy Metabolism/genetics , Homeostasis/genetics , Humans , Mice , Mice, Obese , Obesity/genetics , Obesity/metabolism , Photoperiod
2.
J Neuroendocrinol ; 27(2): 79-87, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25443173

ABSTRACT

Seasonal or photoperiodically sensitive animals respond to altered day length with changes in physiology (growth, food intake and reproductive status) and behaviour to adapt to predictable yearly changes in the climate. Typically, different species of hamsters, voles and sheep are the most studied animal models of photoperiodism. Although laboratory rats are generally considered nonphotoperiodic, one rat strain, the inbred Fischer 344 (F344) rat, has been shown to be sensitive to the length of daylight exposure by changing its physiological phenotype and reproductive status according to the season. The present study aimed to better understand the nature of the photoperiodic response in the F344 rat. We examined the effects of five different photoperiods on the physiological and neuroendocrine responses. Young male F344 rats were held under light schedules ranging from 8 h of light/day to 16 h of light/day, and then body weight, including fat and lean mass, food intake, testes weights and hypothalamic gene expression were compared. We found that rats held under photoperiods of ≥ 12 h of light/day showed increased growth and food intake relative to rats held under photoperiods of ≤ 10 h of light/day. Magnetic resonance imaging analysis confirmed that these changes were mainly the result of a change in lean body mass. The same pattern was evident for reproductive status, with higher paired testes weight in photoperiods of ≥ 12 h of light/day. Accompanying the changes in physiological status were major changes in hypothalamic thyroid hormone (Dio2 and Dio3), retinoic acid (Crabp1 and Stra6) and Wnt/ß-Catenin signalling genes (sFrp2 and Mfrp). Our data demonstrate that a photoperiod schedule of 12 h of light/day is interpreted as a stimulatory photoperiod by the neuroendocrine system of young male F344 rats.


Subject(s)
Body Weight/physiology , Gene Expression/physiology , Hypothalamus/metabolism , Photoperiod , Reproduction/physiology , Seasons , Animals , Male , Rats , Rats, Inbred F344
3.
J Neuroendocrinol ; 25(12): 1264-1272, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24164054

ABSTRACT

In seasonal animals, photoperiod exerts profound effects on physiology, such as growth, energy balance and reproduction, via changes in the neuroendocrine axes. A key element of the photoperiodic response is the thyroid hormone level in the hypothalamus, which is controlled via retrograde transport of thyroid-stimulating hormone (TSH) from the pars tuberalis of the pituitary. TSH regulates type II deiodinase (Dio2) expression, which transforms inactive thyroid hormone to its active form, via TSH receptors expressed in the ependymal cells of the hypothalamus. In the present study, we hypothesised that a second peptide hormone, neuromedin U (NMU), may play a role in the photoperiodic response alongside TSH because the gene for NMU is also expressed in a strongly photoperiod-dependent manner in the pars tuberalis and its receptor NMU2 is expressed in the ependymal layer of the third ventricle in photoperiod-sensitive F344 rats. Consistent with other studies conducted in nonseasonal mammals, we found that acute i.c.v. injections of NMU into the hypothalamus negatively regulated food intake and body weight and increased core body temperature in F344 rats. At the same time, NMU increased Dio2 mRNA expression in the ependymal region of the hypothalamus similar to the effects of TSH. These data suggest that NMU may affect acute and photoperiodically controlled energy balance through distinct pathways. We also showed that TSH inhibits the expression of type III deiodinase (Dio3) in F344 rats, a response not mimicked by NMU. Furthermore, NMU also increased the expression of genes from the Wnt/ß-catenin pathway within the ependymal layer of the third ventricle. This effect was not influenced by TSH. These data indicate that, although NMU acts with some similarities to TSH, it also has completely distinct signalling functions that do not overlap. In summary, the present study of NMU signalling reveals the potential for a new player in the control of seasonal biology.


Subject(s)
Molecular Mimicry , Neuropeptides/physiology , Photoperiod , Signal Transduction , Thyrotropin/physiology , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Male , Rats , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL
...