Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(3): 112153, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36848289

ABSTRACT

Pyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function. In vivo, mice harboring a T cell-specific deletion of PDH are less susceptible to developing experimental autoimmune encephalomyelitis. Mechanistically, the absence of PDH in Th17 cells increases glutaminolysis, glycolysis, and lipid uptake in a mammalian target of rapamycin (mTOR)-dependent manner. However, cellular citrate remains critically low in mutant Th17 cells, which interferes with oxidative phosphorylation (OXPHOS), lipid synthesis, and histone acetylation, crucial for transcription of Th17 signature genes. Increasing cellular citrate in PDH-deficient Th17 cells restores their metabolism and function, identifying a metabolic feedback loop within the central carbon metabolism that may offer possibilities for therapeutically targeting Th17 cell-driven autoimmunity.


Subject(s)
Citric Acid , Th17 Cells , Mice , Animals , Citrates , Oxidoreductases , Lipids , Pyruvates , Mammals
2.
J Neuropathol Exp Neurol ; 76(3): 216-224, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28395086

ABSTRACT

Lewy body disorders (LBD) are common neurodegenerative diseases characterized by the presence of aggregated α-synuclein in Lewy bodies and Lewy neurites in the central and peripheral nervous systems. The brains of patients with LBD often display other comorbid pathologies, i.e. insoluble tau, ß-amyloid aggregates, TAR DNA-binding protein 43 (TDP-43) deposits, and argyrophilic grain disease (AGD). The incidence and physiological relevance of these concurrent pathological findings remain controversial. We performed a semiquantitative detailed mapping of α-synuclein, tau, ß-amyloid (Aß), TDP-43, and AGD pathologies in 17 areas in 63 LBD cases (44 with Parkinson disease [PD], 28 with dementia, and 19 with dementia with Lewy bodies). APOE and MAPT genetic variants were also investigated. A majority of LBD cases had 2 or 3 concomitant findings, particularly Alzheimer disease-related pathology. Pathological stages of tau, ß-amyloid and α-synuclein pathologies were increased in cases with dementia. Aß score was the best correlate of the time to dementia in PD. In addition, ß-amyloid deposition correlated with α-synuclein load in all groups. MAPT H1 haplotype did not influence any assessed pathology in PD. These results highlight the common concurrence of pathologies in patients with LBD that may have an impact on the clinical expression of the diseases.


Subject(s)
Brain/metabolism , Brain/pathology , Lewy Bodies/metabolism , Lewy Bodies/pathology , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Female , Humans , Lewy Bodies/genetics , Lewy Body Disease/genetics , Male , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , tau Proteins/genetics , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...