Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 4941, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666519

ABSTRACT

Protein-RNA interaction plays important roles in post-transcriptional regulation. However, the task of predicting these interactions given a protein structure is difficult. Here we show that, by leveraging a deep learning model NucleicNet, attributes such as binding preference of RNA backbone constituents and different bases can be predicted from local physicochemical characteristics of protein structure surface. On a diverse set of challenging RNA-binding proteins, including Fem-3-binding-factor 2, Argonaute 2 and Ribonuclease III, NucleicNet can accurately recover interaction modes discovered by structural biology experiments. Furthermore, we show that, without seeing any in vitro or in vivo assay data, NucleicNet can still achieve consistency with experiments, including RNAcompete, Immunoprecipitation Assay, and siRNA Knockdown Benchmark. NucleicNet can thus serve to provide quantitative fitness of RNA sequences for given binding pockets or to predict potential binding pockets and binding RNAs for previously unknown RNA binding proteins.


Subject(s)
Argonaute Proteins/metabolism , Deep Learning , RNA/metabolism , Ribonuclease III/metabolism , Adenine/metabolism , Animals , Area Under Curve , Cytosine/metabolism , Gene Knockdown Techniques , Guanine/metabolism , Humans , Mice , Phosphates/metabolism , Protein Binding , RNA, Small Interfering , RNA-Binding Proteins/metabolism , ROC Curve , Ribose/metabolism , Uracil/metabolism
2.
J Med Chem ; 61(24): 11183-11198, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30457858

ABSTRACT

Proteins and ligands sample a conformational ensemble that governs molecular recognition, activity, and dissociation. In structure-based drug design, access to this conformational ensemble is critical to understand the balance between entropy and enthalpy in lead optimization. However, ligand conformational heterogeneity is currently severely underreported in crystal structures in the Protein Data Bank, owing in part to a lack of automated and unbiased procedures to model an ensemble of protein-ligand states into X-ray data. Here, we designed a computational method, qFit-ligand, to automatically resolve conformationally averaged ligand heterogeneity in crystal structures, and applied it to a large set of protein receptor-ligand complexes. In an analysis of the cancer related BRD4 domain, we found that up to 29% of protein crystal structures bound with drug-like molecules present evidence of unmodeled, averaged, relatively isoenergetic conformations in ligand-receptor interactions. In many retrospective cases, these alternate conformations were adventitiously exploited to guide compound design, resulting in improved potency or selectivity. Combining qFit-ligand with high-throughput screening or multitemperature crystallography could therefore augment the structure-based drug design toolbox.


Subject(s)
Computational Biology/methods , Crystallography, X-Ray , Models, Molecular , Proteins/chemistry , Algorithms , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Calibration , Cell Cycle Proteins , Databases, Protein , Drug Design , Electrons , High-Throughput Screening Assays/methods , Ligands , Nuclear Proteins/chemistry , Protein Domains , Proteins/metabolism , Transcription Factors/chemistry
3.
Bioinformatics ; 33(14): 2114-2122, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28334257

ABSTRACT

MOTIVATION: Non-coding ribonucleic acids (ncRNA) are functional RNA molecules that are not translated into protein. They are extremely dynamic, adopting diverse conformational substates, which enables them to modulate their interaction with a large number of other molecules. The flexibility of ncRNA provides a challenge for probing their complex 3D conformational landscape, both experimentally and computationally. RESULTS: Despite their conformational diversity, ncRNAs mostly preserve their secondary structure throughout the dynamic ensemble. Here we present a kinematics-based procedure to morph an RNA molecule between conformational substates, while avoiding inter-atomic clashes. We represent an RNA as a kinematic linkage, with fixed groups of atoms as rigid bodies and rotatable bonds as degrees of freedom. Our procedure maintains RNA secondary structure by treating hydrogen bonds between base pairs as constraints. The constraints define a lower-dimensional, secondary-structure constraint manifold in conformation space, where motions are largely governed by molecular junctions of unpaired nucleotides. On a large benchmark set, we show that our morphing procedure compares favorably to peer algorithms, and can approach goal conformations to within a low all-atom RMSD by directing fewer than 1% of its atoms. Our results suggest that molecular junctions can modulate 3D structural rearrangements, while secondary structure elements guide large parts of the molecule along the transition to the correct final conformation. AVAILABILITY AND IMPLEMENTATION: The source code, binaries and data are available at https://simtk.org/home/kgs . CONTACT: amelie.heliou@polytechnique.edu or vdbedem@stanford.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Computer Simulation , Models, Molecular , Nucleic Acid Conformation , RNA, Untranslated/chemistry , Software , Algorithms
4.
Methods Mol Biol ; 1517: 251-275, 2017.
Article in English | MEDLINE | ID: mdl-27924488

ABSTRACT

MicroRNA (miRNA) and Argonaute (AGO) protein together form the RNA-induced silencing complex (RISC) that plays an essential role in the regulation of gene expression. Elucidating the underlying mechanism of AGO-miRNA recognition is thus of great importance not only for the in-depth understanding of miRNA function but also for inspiring new drugs targeting miRNAs. In this chapter we introduce a combined computational approach of molecular dynamics (MD) simulations, Markov state models (MSMs), and protein-RNA docking to investigate AGO-miRNA recognition. Constructed from MD simulations, MSMs can elucidate the conformational dynamics of AGO at biologically relevant timescales. Protein-RNA docking can then efficiently identify the AGO conformations that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms of molecular recognition between large, flexible, and complex biomolecules.


Subject(s)
Argonaute Proteins/antagonists & inhibitors , Computational Biology/methods , Drug Delivery Systems/methods , MicroRNAs/antagonists & inhibitors , Argonaute Proteins/chemistry , Argonaute Proteins/genetics , Humans , MicroRNAs/chemistry , MicroRNAs/genetics , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...