Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Radiol ; 4: 1357341, 2024.
Article in English | MEDLINE | ID: mdl-38840717

ABSTRACT

Standard treatment of patients with glioblastoma includes surgical resection of the tumor. The extent of resection (EOR) achieved during surgery significantly impacts prognosis and is used to stratify patients in clinical trials. In this study, we developed a U-Net-based deep-learning model to segment contrast-enhancing tumor on post-operative MRI exams taken within 72 h of resection surgery and used these segmentations to classify the EOR as either maximal or submaximal. The model was trained on 122 multiparametric MRI scans from our institution and achieved a mean Dice score of 0.52 ± 0.03 on an external dataset (n = 248), a performance -on par with the interrater agreement between expert annotators as reported in literature. We obtained an EOR classification precision/recall of 0.72/0.78 on the internal test dataset (n = 462) and 0.90/0.87 on the external dataset. Furthermore, Kaplan-Meier curves were used to compare the overall survival between patients with maximal and submaximal resection in the internal test dataset, as determined by either clinicians or the model. There was no significant difference between the survival predictions using the model's and clinical EOR classification. We find that the proposed segmentation model is capable of reliably classifying the EOR of glioblastoma tumors on early post-operative MRI scans. Moreover, we show that stratification of patients based on the model's predictions offers at least the same prognostic value as when done by clinicians.

2.
Sci Rep ; 13(1): 18897, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919325

ABSTRACT

Extent of resection after surgery is one of the main prognostic factors for patients diagnosed with glioblastoma. To achieve this, accurate segmentation and classification of residual tumor from post-operative MR images is essential. The current standard method for estimating it is subject to high inter- and intra-rater variability, and an automated method for segmentation of residual tumor in early post-operative MRI could lead to a more accurate estimation of extent of resection. In this study, two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task. The models were extensively validated on a multicenter dataset with nearly 1000 patients, from 12 hospitals in Europe and the United States. The best performance achieved was a 61% Dice score, and the best classification performance was about 80% balanced accuracy, with a demonstrated ability to generalize across hospitals. In addition, the segmentation performance of the best models was on par with human expert raters. The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.


Subject(s)
Glioblastoma , Humans , Europe , Glioblastoma/diagnostic imaging , Glioblastoma/surgery , Glioblastoma/pathology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neoplasm, Residual/diagnostic imaging , Neural Networks, Computer , Multicenter Studies as Topic , Datasets as Topic
3.
Sci Rep ; 13(1): 15570, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730820

ABSTRACT

For patients suffering from central nervous system tumors, prognosis estimation, treatment decisions, and postoperative assessments are made from the analysis of a set of magnetic resonance (MR) scans. Currently, the lack of open tools for standardized and automatic tumor segmentation and generation of clinical reports, incorporating relevant tumor characteristics, leads to potential risks from inherent decisions' subjectivity. To tackle this problem, the proposed Raidionics open-source software has been developed, offering both a user-friendly graphical user interface and stable processing backend. The software includes preoperative segmentation models for each of the most common tumor types (i.e., glioblastomas, lower grade gliomas, meningiomas, and metastases), together with one early postoperative glioblastoma segmentation model. Preoperative segmentation performances were quite homogeneous across the four different brain tumor types, with an average Dice around 85% and patient-wise recall and precision around 95%. Postoperatively, performances were lower with an average Dice of 41%. Overall, the generation of a standardized clinical report, including the tumor segmentation and features computation, requires about ten minutes on a regular laptop. The proposed Raidionics software is the first open solution enabling an easy use of state-of-the-art segmentation models for all major tumor types, including preoperative and postsurgical standardized reports.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Glioblastoma , Meningeal Neoplasms , Meningioma , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Glioblastoma/diagnostic imaging , Glioblastoma/surgery , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...