Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Blood Transfus ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38814881

ABSTRACT

BACKGROUND: The Rh blood group system is highly complex, polymorphic, and immunogenic. The presence of RHD gene variants in RhD negative pregnant women is a challenge in fetal RHD genotyping as it may influence the antenatal management of anti-D prophylaxis. The aim of this study was to determine the efficiency of a non-invasive single-exon approach in the obstetric population of Western Sweden in a 31-month follow up. The frequency and type of maternal RHD variants were explored and the relation to the ethnicity was elucidated. Discrepant results between fetal RHD genotyping and serological blood group typing of newborns were investigated and clarified. MATERIALS AND METHODS: RHD exon 4 was analysed with quantitative real-time PCR technique in a total of 6,948 blood samples from RhD negative women in early pregnancy. All cases with suspected maternal RHD gene and discrepant results observed in newborn samples, were further investigated using both serological and molecular technologies. RESULTS: A total of 43 samples (0.6%) had inconclusive fetal genotyping result due the presence of a maternal RHD gene. These findings were in most cases (>66%) observed in pregnant women of non-European ancestry. Additionally, two novel RHD alleles were found. Seven discrepant results between fetal RHD genotype and serological RhD type of the newborns, were shown to be related to D antigen variants in newborns. Assay sensitivity was 99.95%, specificity 100%, and accuracy 99.97%. DISCUSSION: The single-exon approach for fetal RHD screening early in pregnancy is an appropriate choice in the population of Western Sweden, with a very low frequency of inconclusive results caused by the presence of maternal RHD gene variants. Due to the high sensitivity, specificity, and accuracy of the test, serological typing of neonates born to RhD negative women has no longer been performed at our laboratory since June 2023.

2.
Transfusion ; 63(10): 1951-1961, 2023 10.
Article in English | MEDLINE | ID: mdl-37694916

ABSTRACT

BACKGROUND: Correct ABO blood-group matching between donor and patient is crucial for safe transfusions. We investigated the underlying reason causing inconclusive ABO serology in samples referred to our laboratory. STUDY DESIGN AND METHODS: Flow cytometric analysis, ABO genotyping, and sequencing were used to characterize ABO-discrepant blood samples (n = 13). ABO gene variants were inserted in a GFP-containing bicistronic vector to assess A/B expression following overexpression in HeLa cells. RESULTS: Seven novel alleles with nonsense mutations predicted to truncate the encoded ABO glycosyltransferases were identified. While these variants could represent O alleles, serology showed signs of ABO glycosyltransferase activity. ABO*A1.01-related alleles displayed remarkably characteristic percentages of A-positive cells for samples with the same variant: c.42C>A (p.Cys14*; 10%), c.102C>A (p.Tyr34*; 31%-32%, n = 2), c.106dup (p.Val36Glyfs*21; 16%-17%, n = 3) or c.181_182ins (p.Leu61Argfs*21; 12%-13%, n = 2). Transfection studies confirmed significantly decreased A expression compared to wild type. The remaining variants were found on ABO*B.01 background: c.1_5dup (pGly3Trpfs*20), c.15dup (p.Arg6Alafs*51) or c.496del (p.Thr166Profs*26). Although the absence of plasma anti-B was noted overall, B antigen expression was barely detected on erythrocytes. Overexpression confirmed decreased B in two variants compared to wildtype while c.1_5dup only showed a non-significant downward trend. CONCLUSION: Samples displaying aberrant ABO serology revealed seven principally interesting alleles. Despite the presence of truncating mutations, normally resulting in null alleles, low levels of ABO antigens were detectable where alterations affected ABO exons 1-4 but not exon 7. This is compatible with the previously proposed concept that alternative start codons in early exons can be used to initiate the translation of functional ABO glycosyltransferase.


Subject(s)
Blood Group Antigens , Glycosyltransferases , Humans , Alleles , Glycosyltransferases/genetics , Genotype , Phenotype , HeLa Cells , ABO Blood-Group System/genetics
3.
Vox Sang ; 118(8): 690-694, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37265146

ABSTRACT

BACKGROUND AND OBJECTIVES: The extremely rare Rhnull phenotype is characterized by the absence of all Rh antigens on erythrocytes. It is divided into the regulator and amorph types based on the underlying genetic background. The more common regulator type depends on critical variants silencing RHAG, which encodes RhAG glycoprotein, necessary for RhD/RhCE expression. Rhnull cells have altered expression of glycophorin B and LW glycoprotein. MATERIALS AND METHODS: Four unrelated Rhnull individuals were investigated. Serological testing was performed according to standard blood bank practice. RHD/RHCE and S/s allele-specific Polymerase chain reaction (PCR) genotyping was done on genomic DNA using in-house PCR assays. RHAG, and in some cases also RHD/RHCE, were sequenced. Initial s phenotyping results triggered additional serological investigation. RESULTS: Anti-Rh29 was identified in all four individuals. Extended typing with anti-S and anti-s showed that the three samples predicted to type as s+ failed to react with 2 of 5 anti-s. Sequence analysis of all 10 RHAG exons and the immediate intron/exon boundaries revealed a single nucleotide variant in the 3'-end of intron 6, c.946 -2a>g in all samples. RHD/RHCE showed no alterations. CONCLUSION: A novel Nordic Rhnull allele was identified. In addition, it was shown that s+ Rhnull red blood cells are not only U- but also have qualitative changes in their s antigen expression.


Subject(s)
Blood Group Antigens , Rh-Hr Blood-Group System , Rh-Hr Blood-Group System/genetics , Phenotype , Base Sequence , Polymerase Chain Reaction
4.
Vox Sang ; 117(11): 1332-1344, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36121188

ABSTRACT

BACKGROUND AND OBJECTIVES: Under the ISBT, the Working Party (WP) for Red Cell Immunogenetics and Blood Group Terminology is charged with ratifying blood group systems, antigens and alleles. This report presents the outcomes from four WP business meetings, one located in Basel in 2019 and three held as virtual meetings during the COVID-19 pandemic in 2020 and 2021. MATERIALS AND METHODS: As in previous meetings, matters pertaining to blood group antigen nomenclature were discussed. New blood group systems and antigens were approved and named according to the serologic, genetic, biochemical and cell biological evidence presented. RESULTS: Seven new blood group systems, KANNO (defined numerically as ISBT 037), SID (038), CTL2 (039), PEL (040), MAM (041), EMM (042) and ABCC1 (043) were ratified. Two (039 and 043) were de novo discoveries, and the remainder comprised reported antigens where the causal genes were previously unknown. A further 15 blood group antigens were added to the existing blood group systems: MNS (002), RH (004), LU (005), DI (010), SC (013), GE (020), KN (022), JMH (026) and RHAG (030). CONCLUSION: The ISBT now recognizes 378 antigens, of which 345 are clustered within 43 blood group systems while 33 still have an unknown genetic basis. The ongoing discovery of new blood group systems and antigens underscores the diverse and complex biology of the red cell membrane. The WP continues to update the blood group antigen tables and the allele nomenclature tables. These can be found on the ISBT website (http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/).


Subject(s)
Blood Group Antigens , COVID-19 , Erythrocytes , Humans , Blood Group Antigens/genetics , Blood Transfusion , Immunogenetics , Pandemics , Erythrocytes/immunology
7.
J Clin Med ; 11(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35629001

ABSTRACT

Hemolytic disease of the fetus and newborn (HDFN), as well as fetal and neonatal alloimmune thrombocytopenia (FNAIT), represent two important disease entities that are caused by maternal IgG antibodies directed against nonmaternally inherited antigens on the fetal blood cells. These antibodies are most frequently directed against the RhD antigen on red blood cells (RBCs) or the human platelet antigen 1a (HPA-1a) on platelets. For optimal management of pregnancies where HDFN or FNAIT is suspected, it is essential to determine the RhD or the HPA-1a type of the fetus. Noninvasive fetal RhD typing is also relevant for identifying which RhD-negative pregnant women should receive antenatal RhD prophylaxis. In this review, we will give an overview of the clinical indications and technical challenges related to the noninvasive analysis of fetal RBCs or platelet types. In addition, we will discuss the ethical implications associated with the routine administration of antenatal RhD to all pregnant RhD-negative women and likewise the ethical challenges related to making clinical decisions concerning the mother that have been based on samples collected from the (presumptive) father, which is a common practice when determining the risk of FNAIT.

8.
Int J Mol Sci ; 23(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35409292

ABSTRACT

The Sda histo-blood group antigen (GalNAcß1-4(NeuAcα2-3)Galß-R) is implicated in various infections and constitutes a potential biomarker for colon cancer. Sd(a−) individuals (2−4% of Europeans) may produce anti-Sda, which can lead to incompatible blood transfusions, especially if donors with the high-expressing Sd(a++)/Cad phenotype are involved. We previously reported the association of B4GALNT2 mutations with Sd(a−), which established the SID blood-group system. The present study provides causal proof underpinning this correlation. Sd(a−) HEK293 cells were transfected with different B4GALNT2 constructs and evaluated by immunostaining and glycoproteomics. The predominant SIDnull candidate allele with rs7224888:T>C (p.Cys406Arg) abolished Sda synthesis, while this antigen was detectable as N- or O-glycans on glycoproteins following transfection of wildtype B4GALNT2. Surprisingly, two rare missense variants, rs148441237:A>G and rs61743617:C>T, found in a Sd(a−) compound heterozygote, gave results similar to wildtype. To elucidate on whether Sd(a++)/Cad also depends on B4GALNT2 alterations, this gene was sequenced in five individuals. No Cad-specific changes were identified, but a detailed erythroid Cad glycoprotein profile was obtained, especially for glycophorin-A (GLPA) O-glycosylation, equilibrative nucleoside transporter 1 (S29A1) O-glycosylation, and band 3 anion transport protein (B3AT) N-glycosylation. In conclusion, the p.Cys406Arg ß4GalNAc-T2 variant causes Sda-deficiency in humans, while the enigmatic Cad phenotype remains unresolved, albeit further characterized.


Subject(s)
Blood Group Antigens , N-Acetylgalactosaminyltransferases , Blood Group Antigens/genetics , HEK293 Cells , Humans , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Phenotype
9.
Vox Sang ; 117(2): 157-165, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34155647

ABSTRACT

BACKGROUND AND OBJECTIVES: Non-invasive assays for predicting foetal blood group status in pregnancy serve as valuable clinical tools in the management of pregnancies at risk of detrimental consequences due to blood group antigen incompatibility. To secure clinical applicability, assays for non-invasive prenatal testing of foetal blood groups need to follow strict rules for validation and quality assurance. Here, we present a multi-national position paper with specific recommendations for validation and quality assurance for such assays and discuss their risk classification according to EU regulations. MATERIALS AND METHODS: We reviewed the literature covering validation for in-vitro diagnostic (IVD) assays in general and for non-invasive foetal RHD genotyping in particular. Recommendations were based on the result of discussions between co-authors. RESULTS: In relation to Annex VIII of the In-Vitro-Diagnostic Medical Device Regulation 2017/746 of the European Parliament and the Council, assays for non-invasive prenatal testing of foetal blood groups are risk class D devices. In our opinion, screening for targeted anti-D prophylaxis for non-immunized RhD negative women should be placed under risk class C. To ensure high quality of non-invasive foetal blood group assays within and beyond the European Union, we present specific recommendations for validation and quality assurance in terms of analytical detection limit, range and linearity, precision, robustness, pre-analytics and use of controls in routine testing. With respect to immunized women, different requirements for validation and IVD risk classification are discussed. CONCLUSION: These recommendations should be followed to ensure appropriate assay performance and applicability for clinical use of both commercial and in-house assays.


Subject(s)
Blood Group Antigens , Blood Group Antigens/genetics , Female , Fetal Blood , Fetus , Genotype , Humans , Pregnancy , Prenatal Diagnosis , Rh-Hr Blood-Group System/genetics
10.
Immunohematology ; 36(3): 99-103, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33112634

ABSTRACT

CONCLUSIONS: This update on the P1PK blood group system (Hellberg Å, Westman JS, Thuresson B, Olsson ML. P1PK: the blood group system that changed its name and expanded. Immunohematology 2013;29:25-33) provides recent findings concerning the P1PK blood group system that have both challenged and confirmed old theories. The glycosphingolipids can no longer be considered the sole carriers of the antigens in this system because the P1 antigen has been detected on human red blood cell glycoproteins. New indications suggest that P1Pk synthase activity truly depends on the DXD motif, and the genetic background and molecular mechanism behind the common P1 and P2 phenotypes were found to depend on transcriptional regulation. Transcription factors bind the P1 allele selectively to a motif around rs5751348 in a regulatory region of A4GALT, which enhances transcription of the gene. Nonetheless, unexplained differences in antigen expression between individuals remain.


Subject(s)
Blood Group Antigens/genetics , Alleles , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Gene Expression Regulation , Humans
11.
Transfus Med ; 30(6): 508-512, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33103288

ABSTRACT

OBJECTIVES: To carry out genetic and serological analyses of a Swiss blood donor and a Danish patient carrying an aberrant ABO phenotype with weak A expression. BACKGROUND: ABO is the most clinically important blood group system but also one of the most complex. The system antigens are determined by carbohydrate structures generated by A and B glycosyltransferases encoded by the ABO gene. Genetic variants of ABO may encode a glycosyltransferase with reduced activity, leading to weak expression of A antigen. METHODS: Samples from two individuals were examined using genetic testing and extended immunohaematological evaluation, including standard serological methods, flow cytometry and analysis of plasma glycosyltransferase activity. RESULTS: Both individuals were serologically determined to be Aweak B. Genetic testing revealed that both were heterozygous for a novel ABO*A1.01-like allele with an in-frame duplication of 21 nucleotides in exon 7 (c.543_563dup), leading to the insertion of seven amino acids (QDVSMRR). Flow cytometric testing of native red blood cells (RBCs) showed very weak A antigen expression. This was in accordance with the enzyme activity test. CONCLUSION: In summary, we describe a novel A allele with a duplication of 21 nucleotides in exon 7 that significantly decreases the enzyme activity and leads to very weak expression of A antigen. (200 words).


Subject(s)
ABO Blood-Group System , Alleles , Erythrocytes/metabolism , Exons , Heterozygote , ABO Blood-Group System/biosynthesis , ABO Blood-Group System/genetics , Aged , Denmark , Humans , Male , Switzerland
12.
Vox Sang ; 115(5): 466-471, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32166750

ABSTRACT

BACKGROUND AND OBJECTIVES: Fetal RHD genotyping of cell-free maternal plasma DNA from RhD negative pregnant women can be used to guide targeted antenatal and postnatal anti-D prophylaxis for the prevention of RhD immunization. To assure the quality of clinical testing, we conducted an external quality assessment workshop with the participation of 31 laboratories. MATERIALS AND METHODS: Aliquots of pooled maternal plasma from gestational week 25 were sent to each laboratory. One sample was fetal RHD positive, and a second sample was fetal RHD negative. A reporting scheme was supplied for data collection, including questions regarding the methodological setup, results and clinical recommendations. The samples were tested blindly. RESULTS: Different methodological approaches were used; 29 laboratories used qPCR and two laboratories used ddPCR, employing a total of eight different combinations of RHD exon targets. Fetal RHD genotyping was performed with no false-negative and no false-positive results. One inconclusive result was reported for the RHD positive sample. All clinical conclusions were satisfactory. CONCLUSION: This external quality assessment workshop demonstrates that despite the different approaches taken to perform the clinical assays, fetal RHD genotyping is a reliable laboratory assay to guide targeted use of Rh prophylaxis in a clinical setting.


Subject(s)
Genotyping Techniques/standards , Rh-Hr Blood-Group System/genetics , Exons , Female , Fetus/metabolism , Humans , Plasma/chemistry , Plasma/metabolism , Pregnancy , Prenatal Diagnosis/standards , Real-Time Polymerase Chain Reaction , Rh-Hr Blood-Group System/blood , Rho(D) Immune Globulin
13.
Vox Sang ; 115(3): 241-248, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31912520

ABSTRACT

BACKGROUND AND OBJECTIVES: There is concern regarding the lack of prevention of unnecessary transfusion of RhD negative red cells and unnecessary administration of Rh immunoglobulin (RhIG) to pregnant women. In this study, performance of ID RHD XT, a genotyping assay for identification of six RHD allelic variants and human platelet antigens HPA-1a/1b was assessed. MATERIALS AND METHODS: Whole blood samples presenting weak, discrepant or inconclusive D phenotype results were genotyped with ID RHD XT and compared to reference molecular tests. Candidacy for RhIG prophylaxis was determined by analysing samples from pregnant women. Hands-on time to complete the procedures was measured. RESULTS: Overall, 167 samples were tested (55 donors, 56 patients, 52 pregnant women and four newborns). Agreement between ID RHD XT and the reference method was 100% (51% weak D type 1, 2 or 3; 35·5% weak D Types 1, 2 or 3 not detected; 4% RHD deletion; 1% RHD*Pseudogene; 1% RHD*DIIIa-CE(3-7)-D; and 4% no amplification variant detected for RHD genotype; and 64% HPA-1a/a; 30% HPA-1a/b; and 3% HPA-1b/b for HPA-1 genotype). Call rate was 98·2%. ID RHD XT identified 40% of the pregnant women that would not have required RhIG prophylaxis. Overall hands-on time was 25-45 min to process a batch of 24 samples, and four hours for total assay time. CONCLUSION: ID RHD XT yielded reproducible results for RHD typing in serologically weak D phenotype individuals. ID RHD XT was proven useful for the correct management of patients with RhD serological discrepancies and the rational use of RhIG in pregnancy.


Subject(s)
Antigens, Human Platelet/genetics , Genotyping Techniques/methods , Rh-Hr Blood-Group System/genetics , Rho(D) Immune Globulin/genetics , Alleles , Female , Humans , Infant, Newborn , Integrin beta3 , Pregnancy
14.
Biochem Biophys Rep ; 19: 100659, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31367682

ABSTRACT

Sda is a high-frequency carbohydrate histo-blood group antigen, GalNAcß1-4(NeuAcα2-3)Galß, implicated in pathogen invasion, cancer, xenotransplantation and transfusion medicine. Complete lack of this glycan epitope results in the Sd(a-) phenotype observed in 4% of individuals who may produce anti-Sda. A candidate gene (B4GALNT2), encoding a Sda-synthesizing ß-1,4-N-acetylgalactosaminyltransferase (ß4GalNAc-T2), was cloned in 2003 but the genetic basis of human Sda deficiency was never elucidated. Experimental and bioinformatic approaches were used to identify and characterize B4GALNT2 variants in nine Sd(a-) individuals. Homozygosity for rs7224888:T > C dominated the cohort (n = 6) and causes p.Cys466Arg, which targets a highly conserved residue located in the enzymatically active domain and is judged deleterious to ß4GalNAc-T2. Its allele frequency was 0.10-0.12 in different cohorts. A Sd(a-) compound heterozygote combined rs7224888:T > C with a splice-site mutation, rs72835417:G > A, predicted to alter splicing and occurred at a frequency of 0.11-0.12. Another compound heterozygote had two rare nonsynonymous variants, rs148441237:A > G (p.Gln436Arg) and rs61743617:C > T (p.Arg523Trp), in trans. One sample displayed no differences compared to Sd(a+). When investigating linkage disequilibrium between B4GALNT2 variants, we noted a 32-kb block spanning intron 9 to the intergenic region downstream of B4GALNT2. This block includes RP11-708H21.4, a long non-coding RNA recently reported to promote tumorigenesis and poor prognosis in colon cancer. The expression patterns of B4GALNT2 and RP11-708H21.4 correlated extremely well in >1000 cancer cell lines. In summary, we identified a connection between variants of the cancer-associated B4GALNT2 gene and Sda, thereby establishing a new blood group system and opening up for the possibility to predict Sd(a+) and Sd(a‒) phenotypes by genotyping.

16.
Transfusion ; 59(3): 1108-1117, 2019 03.
Article in English | MEDLINE | ID: mdl-30597575

ABSTRACT

BACKGROUND: The P1 antigen was first described in 1927 and belongs to the P1PK histo-blood group system, together with Pk and NOR. The A4GALT-encoded 4-α-galactosyltransferase synthesizes these antigens and has been considered to extend glycolipids exclusively. However, contradicting studies have been published regarding the presence of P1 on human glycoproteins. In other species, P1 occurs on glycoproteins. Furthermore, human ABH antigens occur on both glycolipids and glycoproteins and are biochemically related to P1. Thus, we hypothesized that P1 is present on RBC glycoproteins in humans. STUDY DESIGN AND METHODS: RBCs of known P1 /P2 status (phenotype and rs8138197 genotype) were used. The RBC surface glycans were modified with α-galactosidases, papain, and/or peptide-N-glycosidase F. RBC membrane proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/immunoblot. A new P 1 /P 2 -allelic discrimination assay based on rs5751348 was validated. RESULTS: P1 occurs on various glycoproteins, seen as smearlike patterns in anti-P1-stained immunoblots with RBC membranes of P1 but not P2 or p phenotype. There was a significant difference between the staining of P 1 -homozygous and P 1 -heterozygous RBCs (P 1 P 1 > P 1 P 2 ), as well as intragenotypic variation. Immunoblotting banding patterns show major carriers at approximately 50 and 100 kDa. P1 staining was lost after treatment of RBCs with α-galactosidase of broad Galα-1,3/4/6-specificity. Peptide-N-glycosidase F treatment reduced the P1 signal, while papain or α-1,3-specific galactosidase did not. P 1 /P 2 status was confirmed by a new rs5751348 assay. CONCLUSION: Our data indicate that the P1 antigen can reside on human RBC glycoproteins. Glycosidase studies suggest that at least part of the epitopes occur on N-glycans.


Subject(s)
Erythrocytes/metabolism , Glycoproteins/metabolism , P Blood-Group System/metabolism , Alleles , Electrophoresis, Polyacrylamide Gel , Galactosyltransferases/metabolism , Genotype , Globosides/metabolism , Humans , Phenotype
17.
Blood ; 131(14): 1611-1616, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29438961

ABSTRACT

P1 and Pk are glycosphingolipid antigens synthesized by the A4GALT-encoded α1,4-galactosyltransferase, using paragloboside and lactosylceramide as acceptor substrates, respectively. In addition to the compatibility aspects of these histo-blood group molecules, both constitute receptors for multiple microbes and toxins. Presence or absence of P1 antigen on erythrocytes determines the common P1 (P1+Pk+) and P2 (P1-Pk+weak) phenotypes. A4GALT transcript levels are higher in P1 individuals and single-nucleotide polymorphisms (SNPs) in noncoding regions of A4GALT, particularly rs5751348, correlate with P1/P2 status. Despite these recent findings, the molecular mechanism underlying these phenotypes remains elusive. The In(Lu) phenotype is caused by Krüppel-like factor 1 (KLF1) haploinsufficiency and shows decreased P1 levels on erythrocytes. We therefore hypothesized KLF1 regulates A4GALT expression. Intriguingly, P1 -specific sequences including rs5751348 revealed potential binding sites for several hematopoietic transcription factors, including KLF1. However, KLF1 binding did not explain P1 -specific shifts in electrophoretic mobility-shift assays and small interfering RNA silencing of KLF1 did not affect A4GALT transcript levels. Instead, protein pull-down experiments using P1 but not P2 oligonucleotide probes identified runt-related transcription factor 1 (RUNX1) by mass spectrometry. Furthermore, RUNX1 binds P1 alleles selectively, and knockdown of RUNX1 significantly decreased A4GALT transcription. These data indicate that RUNX1 regulates A4GALT and thereby the expression of clinically important glycosphingolipids implicated in blood group incompatibility and host-pathogen interactions.


Subject(s)
Alleles , Core Binding Factor Alpha 2 Subunit/metabolism , Galactosyltransferases/biosynthesis , Globosides/biosynthesis , Haploinsufficiency , Transcription, Genetic , Cell Line , Core Binding Factor Alpha 2 Subunit/genetics , Galactosyltransferases/genetics , Gene Silencing , Globosides/genetics , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
19.
Immunohematology ; 34(4): 161-163, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30624951

ABSTRACT

CONCLUSIONS: The main change that has occurred in the GLOB blood group system since the GLOB review published in this journal in 2013 is the addition of an antigen. The high-prevalence PX2 antigen, originally recognized as the x2 glycosphingolipid, is expressed on red blood cells of most individuals and is elevated in the rare PP1Pk-negative p blood group phenotype. P synthase, encoded by B3GALNT1, was found to elongate paragloboside to PX2 by adding the terminal ß3GalNAc moiety. Hence, PX2 was moved from the GLOB collection to the GLOB system. The presence of naturally-occurring anti-PX2 was noted in P1k and P2k individuals exhibiting nonfunctional P synthase. Although the clinical significance of this specificity remains unclear, a recommendation to avoid transfusing Pk patients with p phenotype blood has been made. Currently, 13 mutations at the highly conserved B3GALNT1 locus have been found to abolish P synthase function and are recognized as null alleles by the International Society of Blood Transfusion. A new allele with a missense mutation but resulting in normal expression of P has been assigned GLOB*02. Finally, the GLOB collection was made obsolete after the move of LKE antigen to the 901 series.


Subject(s)
Blood Group Antigens/immunology , Alleles , Erythrocytes , Humans , N-Acetylgalactosaminyltransferases , Phenotype
20.
Transfusion ; 56(9): 2391-2, 2016 09.
Article in English | MEDLINE | ID: mdl-27282785

ABSTRACT

We report a novel RHCE*02 allele in a Swedish blood donor that is characterized by the change c.460A>G (Arg154Gly). The blood donor's red blood cells showed variable reactivity with different monoclonal anti-C and anti-e and antigen strength was markedly weakened. We believe that these changes represent both a quantitative and qualitative alteration of the antigens encoded by this allele.


Subject(s)
Alleles , Hepatitis B e Antigens/immunology , Rh-Hr Blood-Group System/genetics , Antibodies, Monoclonal/immunology , Blood Donors , Erythrocytes/immunology , Erythrocytes/metabolism , Genotype , Haplotypes/genetics , Hepatitis B Core Antigens/immunology , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...