Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Circ Genom Precis Med ; 17(2): e004416, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38516780

ABSTRACT

BACKGROUND: Preimplantation genetic testing (PGT) is a reproductive technology that selects embryos without (familial) genetic variants. PGT has been applied in inherited cardiac disease and is included in the latest American Heart Association/American College of Cardiology guidelines. However, guidelines selecting eligible couples who will have the strongest risk reduction most from PGT are lacking. We developed an objective decision model to select eligibility for PGT and compared its results with those from a multidisciplinary team. METHODS: All couples with an inherited cardiac disease referred to the national PGT center were included. A multidisciplinary team approved or rejected the indication based on clinical and genetic information. We developed a decision model based on published risk prediction models and literature, to evaluate the severity of the cardiac phenotype and the penetrance of the familial variant in referred patients. The outcomes of the model and the multidisciplinary team were compared in a blinded fashion. RESULTS: Eighty-three couples were referred for PGT (1997-2022), comprising 19 different genes for 8 different inherited cardiac diseases (cardiomyopathies and arrhythmias). Using our model and proposed cutoff values, a definitive decision was reached for 76 (92%) couples, aligning with 95% of the multidisciplinary team decisions. In a prospective cohort of 11 couples, we showed the clinical applicability of the model to select couples most eligible for PGT. CONCLUSIONS: The number of PGT requests for inherited cardiac diseases increases rapidly, without the availability of specific guidelines. We propose a 2-step decision model that helps select couples with the highest risk reduction for cardiac disease in their offspring after PGT.


Subject(s)
Clinical Decision-Making , Genetic Diseases, Inborn , Genetic Testing , Heart Diseases , Preimplantation Diagnosis , Referral and Consultation , Female , Humans , Genetic Testing/methods , Heart Diseases/congenital , Heart Diseases/diagnosis , Heart Diseases/genetics , Heart Diseases/prevention & control , Preimplantation Diagnosis/methods , Male , Clinical Decision-Making/methods , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Risk Management , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/prevention & control , Heterozygote , Prospective Studies , Family Characteristics
2.
Neth Heart J ; 31(7-8): 315-323, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37505369

ABSTRACT

BACKGROUND: The arrhythmogenic cardiomyopathy (ACM) phenotype, with life-threatening ventricular arrhythmias and heart failure, varies according to genetic aetiology. We aimed to characterise the phenotype associated with the variant c.1211dup (p.Val406Serfs*4) in the plakophilin­2 gene (PKP2) and compare it with previously reported Dutch PKP2 founder variants. METHODS: Clinical data were collected retrospectively from medical records of 106 PKP2 c.1211dup heterozygous carriers. Using data from the Netherlands ACM Registry, c.1211dup was compared with 3 other truncating PKP2 variants (c.235C > T (p.Arg79*), c.397C > T (p.Gln133*) and c.2489+1G > A (p.?)). RESULTS: Of the 106 carriers, 47 (44%) were diagnosed with ACM, at a mean age of 41 years. By the end of follow-up, 29 (27%) had experienced sustained ventricular arrhythmias and 12 (11%) had developed heart failure, with male carriers showing significantly higher risks than females on these endpoints (p < 0.05). Based on available cardiac magnetic resonance imaging and echocardiographic data, 46% of the carriers showed either right ventricular dilatation and/or dysfunction, whereas a substantial minority (37%) had some form of left ventricular involvement. Both geographical distribution of carriers and haplotype analysis suggested PKP2 c.1211dup to be a founder variant originating from the South-Western coast of the Netherlands. Finally, a Cox proportional hazards model suggested significant differences in ventricular arrhythmia-free survival between 4 PKP2 founder variants, including c.1211dup. CONCLUSIONS: The PKP2 c.1211dup variant is a Dutch founder variant associated with a typical right-dominant ACM phenotype, but also left ventricular involvement, and a possibly more severe phenotype than other Dutch PKP2 founder variants.

3.
Ned Tijdschr Geneeskd ; 1672023 05 10.
Article in Dutch | MEDLINE | ID: mdl-37163412

ABSTRACT

Mitochondrial diseases are the most common inborn errors of metabolism. These severe multisystem disorders cause serious morbidity and mortality. Generally no treatment is available. This underlines the importance of counseling about the reproductive options to prevent the transmission of mitochondrial disorders. The majority of mitochondrial disorders is caused by a defect in a nuclear gene, in which cases the standard reproductive options can be applied, such as prenatal diagnosis (PND) and preimplantation genetic testing (PGT). For mitochondrial disorders caused by a mitochondrial DNA (mtDNA) mutation, reproductive options are determined by the recurrence risk, requiring specific reproductive counseling. For de novomtDNA mutations and inherited mtDNA mutations with a low recurrence risk, PND is possible. In case of a moderate or higher recurrence risk, PGT is the best option. In case the risk of a healthy embryo is (very) low, mitochondrial replacement therapy (MRT) may be a possibility in the future.


Subject(s)
Mitochondrial Diseases , Preimplantation Diagnosis , Pregnancy , Female , Humans , Child , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mitochondrial Diseases/prevention & control , Prenatal Diagnosis , Genetic Testing , DNA, Mitochondrial/genetics
4.
Radiol Cardiothorac Imaging ; 5(2): e230014, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37124643

ABSTRACT

Left ventricular hypertrophy (LVH) has a broad differential diagnosis. Pathogenic variants of mitochondrial DNA are a rare cause of LVH, and cardiac MRI is a powerful technique that may aid in differentiating such rare causes. This case report presents three siblings with a pathogenic variant of the mitochondrially encoded tRNA isoleucine (MT-TI) gene. A distinctive cardiac phenotype was detected with cardiac MRI. Extensive LVH and dilatation and decreased ejection fraction were observed with a pattern of increased T2 signal and extensive late gadolinium enhancement, which was remarkably consistent among all three siblings. Keywords: Cardiomyopathies, MR Imaging, Hypertrophic Cardiomyopathy, Mitochondrial, Inherited Cardiomyopathy, Left Ventricular Hypertrophy, Cardiovascular MRI, Late Gadolinium Enhancement Supplemental material is available for this article. © RSNA, 2023.

5.
Circ Genom Precis Med ; 16(2): e003788, 2023 04.
Article in English | MEDLINE | ID: mdl-36971006

ABSTRACT

BACKGROUND: Dilated cardiomyopathy (DCM) was considered a monogenetic disease that can be caused by over 60 genes. Evidence suggests that the combination of multiple pathogenic variants leads to greater disease severity and earlier onset. So far, not much is known about the prevalence and disease course of multiple pathogenic variants in patients with DCM. To gain insight into these knowledge gaps, we (1) systematically collected clinical information from a well-characterized DCM cohort and (2) created a mouse model. METHODS: Complete cardiac phenotyping and genotyping was performed in 685 patients with consecutive DCM. Compound heterozygous digenic (LMNA [lamin]/titin deletion A-band) with monogenic (LMNA/wild-type) and wild-type/wild-type mice were created and phenotypically followed over time. RESULTS: One hundred thirty-one likely pathogenic/pathogenic (LP/P) variants in robust DCM-associated genes were found in 685 patients with DCM (19.1%) genotyped for the robust genes. Three of the 131 patients had a second LP/P variant (2.3%). These 3 patients had a comparable disease onset, disease severity, and clinical course to patients with DCM with one LP/P. The LMNA/Titin deletion A-band mice had no functional differences compared with the LMNA/wild-type mice after 40 weeks of follow-up, although RNA-sequencing suggests increased cardiac stress and sarcomere insufficiency in the LMNA/Titin deletion A-band mice. CONCLUSIONS: In this study population, 2.3% of patients with DCM with one LP/P also have a second LP/P in a different gene. Although the second LP/P does not seem to influence the disease course of DCM in patients and mice, the finding of a second LP/P can be of importance to their relatives.


Subject(s)
Cardiomyopathy, Dilated , Humans , Animals , Mice , Cardiomyopathy, Dilated/epidemiology , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Connectin/genetics , Prevalence , Mutation , Genotype
6.
Acta Neuropathol ; 143(2): 245-262, 2022 02.
Article in English | MEDLINE | ID: mdl-34918187

ABSTRACT

Nucleotide metabolism is a complex pathway regulating crucial cellular processes such as nucleic acid synthesis, DNA repair and proliferation. This study shows that impairment of the biosynthesis of one of the building blocks of DNA, dTTP, causes a severe, early-onset neurodegenerative disease. Here, we describe two unrelated children with bi-allelic variants in DTYMK, encoding dTMPK, which catalyzes the penultimate step in dTTP biosynthesis. The affected children show severe microcephaly and growth retardation with minimal neurodevelopment. Brain imaging revealed severe cerebral atrophy and disappearance of the basal ganglia. In cells of affected individuals, dTMPK enzyme activity was minimal, along with impaired DNA replication. In addition, we generated dtymk mutant zebrafish that replicate this phenotype of microcephaly, neuronal cell death and early lethality. An increase of ribonucleotide incorporation in the genome as well as impaired responses to DNA damage were observed in dtymk mutant zebrafish, providing novel pathophysiological insights. It is highly remarkable that this deficiency is viable as an essential component for DNA cannot be generated, since the metabolic pathway for dTTP synthesis is completely blocked. In summary, by combining genetic and biochemical approaches in multiple models we identified loss-of-function of DTYMK as the cause of a severe postnatal neurodegenerative disease and highlight the essential nature of dTTP synthesis in the maintenance of genome stability and neuronal survival.


Subject(s)
Neurodegenerative Diseases/genetics , Nucleoside-Phosphate Kinase/genetics , Animals , Female , Humans , Male , Microcephaly/genetics , Mutation , Zebrafish
7.
Neuromuscul Disord ; 31(9): 859-864, 2021 09.
Article in English | MEDLINE | ID: mdl-34419324

ABSTRACT

Whole exome sequencing (WES), analyzed with GENESIS and WeGET, revealed a homozygous deletion in the C1QBP gene in a patient with progressive external ophthalmoplegia (PEO) and multiple mtDNA deletions. The gene encodes the mitochondria-located complementary 1 Q subcomponent-binding protein, involved in mitochondrial homeostasis. Biallelic mutations in C1QBP cause mitochondrial cardiomyopathy and/or PEO with variable age of onset. Our patient showed only late-onset PEO-plus syndrome without overt cardiac involvement. Available data suggest that early-onset cardiomyopathy variants localize in important structural domains and PEO-plus variants in the coiled-coil region. Our patient demonstrates that C1QBP mutations should be considered in individuals with PEO with or without cardiomyopathy.


Subject(s)
Carrier Proteins/genetics , Exome Sequencing , Mitochondrial Proteins/genetics , Ophthalmoplegia, Chronic Progressive External/genetics , Adult , DNA, Mitochondrial/genetics , Female , Homozygote , Humans , Mitochondria/genetics , Mutation , Sequence Deletion
8.
Eur J Hum Genet ; 29(12): 1789-1795, 2021 12.
Article in English | MEDLINE | ID: mdl-34426662

ABSTRACT

In a Dutch non-consanguineous patient having mitochondrial encephalomyopathy with complex I and complex IV deficiency, whole exome sequencing revealed two compound heterozygous variants in SLIRP. SLIRP gene encodes a stem-loop RNA-binding protein that regulates mitochondrial RNA expression and oxidative phosphorylation (OXPHOS). A frameshift and a deep-intronic splicing variant reduced the amount of functional wild-type SLIRP RNA to 5%. Consequently, in patient fibroblasts, MT-ND1, MT-ND6, and MT-CO1 expression was reduced. Lentiviral transduction of wild-type SLIRP cDNA in patient fibroblasts increased MT-ND1, MT-ND6, and MT-CO1 expression (2.5-7.2-fold), whereas mutant cDNAs did not. A fourfold decrease of citrate synthase versus total protein ratio in patient fibroblasts indicated that the resulting reduced mitochondrial mass caused the OXPHOS deficiency. Transduction with wild-type SLIRP cDNA led to a 2.4-fold increase of this ratio and partly restored OXPHOS activity. This confirmed causality of the SLIRP variants. In conclusion, we report SLIRP variants as a novel cause of mitochondrial encephalomyopathy with OXPHOS deficiency.


Subject(s)
Mitochondrial Encephalomyopathies/genetics , RNA-Binding Proteins/genetics , Cells, Cultured , Child , Electron Transport Complex I/metabolism , Electron Transport Complex IV/metabolism , Fibroblasts/metabolism , Genes, Recessive , Humans , Male , Mitochondrial Encephalomyopathies/pathology , Mutation , RNA-Binding Proteins/metabolism
9.
Genet Med ; 23(11): 2186-2193, 2021 11.
Article in English | MEDLINE | ID: mdl-34194005

ABSTRACT

PURPOSE: Accurate interpretation of variants detected in dilated cardiomyopathy (DCM) is crucial for patient care but has proven challenging. We applied a set of proposed refined American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria for DCM, reclassified all detected variants in robust genes, and associated these results to patients' phenotype. METHODS: The study included 902 DCM probands from the Maastricht Cardiomyopathy Registry who underwent genetic testing. Two gene panel sizes (extended n = 48; and robust panel n = 14) and two standards of variant classification (standard versus the proposed refined ACMG/AMP criteria) were applied to compare genetic yield. RESULTS: A pathogenic or likely pathogenic (P/LP) variant was found in 17.8% of patients, and a variant of uncertain significance (VUS) was found in 32.8% of patients when using method 1 (extended panel (n = 48) + standard ACMG/AMP), compared to respectively 16.9% and 12.9% when using method 2 (robust panel (n = 14) + standard ACMG/AMP), and respectively 14% and 14.5% using method 3 (robust panel (n = 14) + refined ACMG/AMP). Patients with P/LP variants had significantly lower event-free survival compared to genotype-negative DCM patients. CONCLUSION: Stringent gene selection for DCM genetic testing reduced the number of VUS while retaining ability to detect similar P/LP variants. The number of genes on diagnostic panels should be limited to genes that have the highest signal to noise ratio.


Subject(s)
Cardiomyopathy, Dilated , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/genetics , Genetic Testing , Genetic Variation , Genomics , Humans , Phenotype
10.
Mol Genet Genomic Med ; 9(2): e1595, 2021 02.
Article in English | MEDLINE | ID: mdl-33432785

ABSTRACT

BACKGROUND: Isobutyryl-CoA dehydrogenase (IBD) is a mitochondrial enzyme catalysing the third step in the degradation of the essential branched-chain amino acid valine and is encoded by ACAD8. ACAD8 mutations lead to isobutyryl-CoA dehydrogenase deficiency (IBDD), which is identified by increased C4-acylcarnitine levels. Affected individuals are either asymptomatic or display a variety of symptoms during infancy, including speech delay, cognitive impairment, failure to thrive, hypotonia, and emesis. METHODS: Here, we review all previously published IBDD patients and describe a girl diagnosed with IBDD who was presenting with autism as the main disease feature. RESULTS: To assess whether a phenotype-genotype correlation exists that could explain the development or absence of clinical symptoms in IBDD, we compared CADD scores, in silico mutation predictions, LoF tolerance scores and C4-acylcarnitine levels between symptomatic and asymptomatic individuals. Statistical analysis of these parameters did not establish significant differences amongst both groups. CONCLUSION: As in our proband, trio whole exome sequencing did not establish an alternative secondary genetic diagnosis for autism, and reported long-term follow-up of IBDD patients is limited, it is possible that autism spectrum disorders could be one of the disease-associated features. Further long-term follow-up is suggested in order to delineate the full clinical spectrum associated with IBDD.


Subject(s)
Acyl-CoA Dehydrogenase/deficiency , Amino Acid Metabolism, Inborn Errors/genetics , Autistic Disorder/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , Phenotype , Acyl-CoA Dehydrogenase/genetics , Amino Acid Metabolism, Inborn Errors/pathology , Autistic Disorder/pathology , Child , Female , Humans , Mutation , Exome Sequencing
11.
Eur J Hum Genet ; 28(7): 956-962, 2020 07.
Article in English | MEDLINE | ID: mdl-32203199

ABSTRACT

Myotonic dystrophy type 1 (DM1) is caused by a CTG trinucleotide repeat expansion on chromosome 19q13.3. While DM1 premutation (36-50 repeats) and protomutation (51-80 repeats) allele carriers are mostly asymptomatic, offspring is at risk of inheriting expanded, symptom-associated, (CTG)n repeats of n > 80. In this study we aimed to evaluate the intergenerational instability of DM1 pre- and protomutation alleles, focussing on the influence of parental gender. One hundred and forty-six parent-child pairs (34 parental premutations, 112 protomutations) were retrospectively selected from the DM1 patient cohort of the Maastricht University Medical Center+. CTG repeat size of parents and children was determined by (triplet-primed) PCR followed by fragment length analysis and Southern blot analysis. Fifty-eight out of eighty-one (71.6%) paternal transmissions led to a (CTG)n repeat of n > 80 in offspring, compared with 15 out of 65 (23.1%) maternal transmissions (p < 0.001). Repeat length instability occurred for paternal (CTG)n repeats of n ≥ 45, while maternal instability did not occur until (CTG)n repeats reached a length of n ≥ 71. Transmission of premutations caused (CTG)n repeats of n > 80 in offspring only when paternally transmitted (two cases), while protomutations caused (CTG)n repeats of n > 80 in offspring in 71 cases, of which 56 (78.9%) were paternally transmitted. In conclusion, our data show that paternally transmitted pre- and protomutations were more unstable than maternally transmitted pre- and protomutations. For genetic counseling, this implies that males with a small DMPK mutation have a higher risk of symptomatic offspring compared with females. Consequently, we suggest addressing sex-dependent factors in genetic counseling of small-sized CTG repeat carriers.


Subject(s)
Myotonic Dystrophy/genetics , Paternal Inheritance , Trinucleotide Repeat Expansion , Adult , Child , Chromosomes, Human, Pair 19/genetics , Female , Humans , Male , Myotonic Dystrophy/pathology
12.
Hum Mutat ; 41(6): 1091-1111, 2020 06.
Article in English | MEDLINE | ID: mdl-32112656

ABSTRACT

Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high-throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC-associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrimental for muscle function, as found in HCM and MFM. Variants associated with HCM are predominantly missense variants, which cluster in the ROD2 domain. This domain is important for binding to the sarcomere and to ensure appropriate cell signaling. We here review FLNC genotype-phenotype correlations based on available evidence.


Subject(s)
Cardiomyopathies/genetics , Filamins/genetics , Muscular Diseases/genetics , Animals , Arrhythmias, Cardiac/genetics , Cardiomyopathy, Dilated/genetics , Disease Models, Animal , Genetic Association Studies , Humans , Mutation , Myopathies, Structural, Congenital/genetics
13.
Neuromuscul Disord ; 29(9): 693-697, 2019 09.
Article in English | MEDLINE | ID: mdl-31488384

ABSTRACT

We report a novel mitochondrial m.4414T>C variant in the mt-tRNAMet (MT-TM) gene in an adult patient with chronic progressive external ophthalmoplegia and myopathy whose muscle biopsy revealed focal cytochrome c oxidase (COX)-deficient and ragged red fibres. The m.4414T>C variant occurs at a strongly evolutionary conserved sequence position, disturbing a canonical base pair and disrupting the secondary and tertiary structure of the mt-tRNAMet. Definitive evidence of pathogenicity is provided by clear segregation of m.4414T>C mutant levels with COX deficiency in single muscle fibres. Interestingly, the variant is present in skeletal muscle at relatively low levels (30%) and undetectable in accessible, non-muscle tissues from the patient and her asymptomatic brother, emphasizing the continuing requirement for a diagnostic muscle biopsy as the preferred tissue for mtDNA genetic investigations of mt-tRNA variants leading to mitochondrial myopathy.


Subject(s)
DNA, Mitochondrial/genetics , Muscle, Skeletal/pathology , Ophthalmoplegia, Chronic Progressive External/genetics , RNA, Transfer, Met/genetics , Aged , Electron Transport Complex IV/metabolism , Female , Humans , Muscle, Skeletal/metabolism , Mutation , Severity of Illness Index
14.
Front Genet ; 9: 400, 2018.
Article in English | MEDLINE | ID: mdl-30369941

ABSTRACT

Mitochondrial disorders, characterized by clinical symptoms and/or OXPHOS deficiencies, are caused by pathogenic variants in mitochondrial genes. However, pathogenic variants in some of these genes can lead to clinical manifestations which overlap with other neuromuscular diseases, which can be caused by pathogenic variants in non-mitochondrial genes as well. Mitochondrial pathogenic variants can be found in the mitochondrial DNA (mtDNA) or in any of the 1,500 nuclear genes with a mitochondrial function. We have performed a two-step next-generation sequencing approach in a cohort of 117 patients, mostly children, in whom a mitochondrial disease-cause could likely or possibly explain the phenotype. A total of 86 patients had a mitochondrial disorder, according to established clinical and biochemical criteria. The other 31 patients had neuromuscular symptoms, where in a minority a mitochondrial genetic cause is present, but a non-mitochondrial genetic cause is more likely. All patients were screened for pathogenic variants in the mtDNA and, if excluded, analyzed by whole exome sequencing (WES). Variants were filtered for being pathogenic and compatible with an autosomal or X-linked recessive mode of inheritance in families with multiple affected siblings and/or consanguineous parents. Non-consanguineous families with a single patient were additionally screened for autosomal and X-linked dominant mutations in a predefined gene-set. We identified causative pathogenic variants in the mtDNA in 20% of the patient-cohort, and in nuclear genes in 49%, implying an overall yield of 68%. We identified pathogenic variants in mitochondrial and non-mitochondrial genes in both groups with, obviously, a higher number of mitochondrial genes affected in mitochondrial disease patients. Furthermore, we show that 31% of the disease-causing genes in the mitochondrial patient group were not included in the MitoCarta database, and therefore would have been missed with MitoCarta based gene-panels. We conclude that WES is preferable to panel-based approaches for both groups of patients, as the mitochondrial gene-list is not complete and mitochondrial symptoms can be secondary. Also, clinically and genetically heterogeneous disorders would require sequential use of multiple different gene panels. We conclude that WES is a comprehensive and unbiased approach to establish a genetic diagnosis in these patients, able to resolve multi-genic disease-causes.

15.
Eur J Hum Genet ; 26(4): 537-551, 2018 04.
Article in English | MEDLINE | ID: mdl-29440775

ABSTRACT

This study aims to identify gene defects in pediatric cardiomyopathy and early-onset brain disease with oxidative phosphorylation (OXPHOS) deficiencies. We applied whole-exome sequencing in three patients with pediatric cardiomyopathy and early-onset brain disease with OXPHOS deficiencies. The brain pathology was studied by MRI analysis. In consanguineous patient 1, we identified a homozygous intronic variant (c.850-3A > G) in the QRSL1 gene, which was predicted to cause abnormal splicing. The variant segregated with the disease and affected the protein function, which was confirmed by complementation studies, restoring OXPHOS function only with wild-type QRSL1. Patient 2 was compound heterozygous for two novel affected and disease-causing variants (c.[253G > A];[938G > A]) in the MTO1 gene. In patient 3, we detected one unknown affected and disease-causing variants (c.2872C > T) and one known disease-causing variant (c.1774C > T) in the AARS2 gene. The c.1774C > T variant was present in the paternal copy of the AARS2 gene, the c.2872C > T in the maternal copy. All genes were involved in translation of mtDNA-encoded proteins. Defects in mtDNA-encoded protein translation lead to severe pediatric cardiomyopathy and brain disease with OXPHOS abnormalities. This suggests that the heart and brain are particularly sensitive to defects in mitochondrial protein synthesis during late embryonic or early postnatal development, probably due to the massive mitochondrial biogenesis occurring at that stage. If both the heart and brain are involved, the prognosis is poor with a likely fatal outcome at young age.


Subject(s)
Cardiomyopathies/genetics , DNA, Mitochondrial/genetics , Developmental Disabilities/genetics , Mitochondrial Diseases/genetics , Mutation , Alanine-tRNA Ligase/genetics , Cardiomyopathies/diagnosis , Carrier Proteins/genetics , Developmental Disabilities/diagnosis , Female , Fetus , Humans , Infant , Male , Mitochondrial Diseases/diagnosis , Nitrogenous Group Transferases/genetics , Oxidative Phosphorylation , Pedigree , RNA-Binding Proteins , Syndrome
16.
Front Mol Neurosci ; 10: 336, 2017.
Article in English | MEDLINE | ID: mdl-29093663

ABSTRACT

Mitochondrial disorders are genetically and clinically heterogeneous, mainly affecting high energy-demanding organs due to impaired oxidative phosphorylation (OXPHOS). Currently, effective treatments for OXPHOS defects, with complex I deficiency being the most prevalent, are not available. Yet, clinical practice has shown that some complex I deficient patients benefit from a high-fat or ketogenic diet, but it is unclear how these therapeutic diets influence mitochondrial function and more importantly, which complex I patients could benefit from such treatment. Dietary studies in a complex I deficient patient with exercise intolerance showed increased muscle endurance on a high-fat diet compared to a high-carbohydrate diet. We performed whole-exome sequencing to characterize the genetic defect. A pathogenic homozygous p.G212V missense mutation was identified in the TMEM126B gene, encoding an early assembly factor of complex I. A complementation study in fibroblasts confirmed that the p.G212V mutation caused the complex I deficiency. The mechanism turned out to be an incomplete assembly of the peripheral arm of complex I, leading to a decrease in the amount of mature complex I. The patient clinically improved on a high-fat diet, which was supported by the 25% increase in maximal OXPHOS capacity in TMEM126B defective fibroblast by the saturated fatty acid palmitic acid, whereas oleic acid did not have any effect in those fibroblasts. Fibroblasts of other patients with a characterized complex I gene defect were tested in the same way. Patient fibroblasts with complex I defects in NDUFS7 and NDUFAF5 responded to palmitic acid, whereas ACAD9, NDUFA12, and NDUFV2 defects were non-responding. Although the data are too limited to draw a definite conclusion on the mechanism, there is a tendency that protein defects involved in early assembly complexes, improve with palmitic acid, whereas proteins defects involved in late assembly, do not. Our data show at a clinical and biochemical level that a high fat diet can be beneficial for complex I patients and that our cell line assay will be an easy tool for the selection of patients, who might potentially benefit from this therapeutic diet.

17.
J Med Genet ; 54(10): 693-697, 2017 10.
Article in English | MEDLINE | ID: mdl-28668821

ABSTRACT

BACKGROUND: Preimplantation genetic diagnosis (PGD) is a reproductive strategy for mitochondrial DNA (mtDNA) mutation carriers, strongly reducing their risk of affected offspring. Embryos either without the mutation or with mutation load below the phenotypic threshold are transferred to the uterus. Because of incidental heteroplasmy deviations in single blastomere and the relatively limited data available, we so far preferred relying on two blastomeres rather than one. Considering the negative effect of a two-blastomere biopsy protocol compared with a single-blastomere biopsy protocol on live birth delivery rate, we re-evaluated the error rate in our current dataset. METHODS: For the m.3243A>G mutation, sufficient embryos/blastomeres were available for a powerful analysis. The diagnostic error rate, defined as a potential false-negative result, based on a threshold of 15%, was determined in 294 single blastomeres analysed in 73 embryos of 9 female m.3243A>G mutation carriers. RESULTS: Only one out of 294 single blastomeres (0.34%) would have resulted in a false-negative diagnosis. False-positive diagnoses were not detected. CONCLUSION: Our findings support a single-blastomere biopsy PGD protocol for the m.3243A>G mutation as the diagnostic error rate is very low. As in the early preimplantation embryo no mtDNA replication seems to occur and the mtDNA is divided randomly among the daughter cells, we conclude this result to be independent of the specific mutation and therefore applicable to all mtDNA mutations.


Subject(s)
Blastomeres , DNA, Mitochondrial/genetics , Genetic Testing/methods , Preimplantation Diagnosis/methods , Biopsy , Blastocyst , Diagnostic Errors , Female , Heterozygote , Humans , Mutation , Pregnancy
18.
Eur J Hum Genet ; 25(7): 886-888, 2017 06.
Article in English | MEDLINE | ID: mdl-28443623

ABSTRACT

In a 51-year-old patient of consanguineous parents with a severe neuromuscular phenotype of early-onset ataxia, myoclonia, dysarthria, muscle weakness and exercise intolerance, exome sequencing revealed a novel homozygous variant (c.-264_31delinsCTCACAAATGCTCA) in the mitochondrial FAD-transporter gene SLC25A32. Flavin adenine dinucleotide (FAD) is an essential co-factor for many mitochondrial enzymes and impaired mitochondrial FAD-transport was supported by a reduced oxidative phosphorylation complex II activity in the patient's muscle, decreased ATP production in fibroblasts, and a deficiency of mitochondrial FAD-dependent enzymes. Clinically, the patient showed improvement upon riboflavin treatment, which is a precursor of FAD. Our results confirm the recently reported case of SLC25A32 as a cause of riboflavin-responsive disease. Our patient showed a more severe clinical phenotype compared with the reported patient, corresponding with the (most likely) complete absence of the SLC25A32-encoding MFT (Mitochondrial Folate Transporter) protein.


Subject(s)
Ataxia/genetics , Dysarthria/genetics , INDEL Mutation , Membrane Transport Proteins/genetics , Muscle Weakness/genetics , Ataxia/diagnosis , Ataxia/drug therapy , Cells, Cultured , Dysarthria/diagnosis , Dysarthria/drug therapy , Fibroblasts/metabolism , Humans , Male , Middle Aged , Muscle Weakness/diagnosis , Muscle Weakness/drug therapy , Phenotype , Riboflavin/metabolism , Riboflavin/therapeutic use , Syndrome , Vitamin B Complex/metabolism , Vitamin B Complex/therapeutic use
19.
J Pediatr ; 182: 371-374.e2, 2017 03.
Article in English | MEDLINE | ID: mdl-28081892

ABSTRACT

Whole-exome sequencing identified multiple genetic causes in 2 infants with heterogeneous disease. Three gene defects in the first patient explained all symptoms, but manifestations were overlapping (blended phenotype). Two gene defects in the second patient explained nonoverlapping symptoms (composite phenotype). Whole-exome sequencing rapidly and comprehensively resolves heterogeneous genetic disease.


Subject(s)
Congenital Abnormalities/genetics , Genetic Diseases, Inborn/diagnosis , Mutation , Sequence Analysis, DNA/methods , Amidohydrolases/genetics , Carboxylic Ester Hydrolases/genetics , Congenital Abnormalities/diagnosis , Exome/genetics , Genetic Testing/methods , Genomics , Genotype , Humans , Infant , Membrane Proteins/genetics , Microtubule-Associated Proteins , Mutagenicity Tests , Phenotype , Receptors, Peptide/genetics , Sensitivity and Specificity , Severity of Illness Index
20.
Hum Reprod ; 32(3): 698-703, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28122886

ABSTRACT

We report on the first PGD performed for the m.14487 T>C mitochondrial DNA (mtDNA) mutation in the MT-ND6 gene, associated with Leigh syndrome. The female carrier gave birth to a healthy baby boy at age 42. This case adds to the successes of PGD for mtDNA mutations.


Subject(s)
DNA, Mitochondrial/genetics , Leigh Disease/diagnosis , Mutation , Female , Humans , Infant, Newborn , Leigh Disease/genetics , Male , Mitochondria/genetics , Pedigree , Pregnancy , Preimplantation Diagnosis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...