Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 47(3): 996-1004, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23260177

ABSTRACT

Human and ecosystem health can be damaged by fecal contamination of recreational waters. Microbial source tracking (MST) can be used to specifically detect domestic sewage containing human waste, thereby informing both risk assessment and remediation strategies. Previously, an inter-laboratory collaboration developed standardized PCR methods for a bacterial, an archaeal, and a viral indicator of human sewage. Here we present results for two subsequent years of field testing in fresh and salt water by five laboratories across the U.S. Gulf Coast (two in Florida and one each in Mississippi, Louisiana and Texas) using common standard operating procedures (SOPs) developed previously. Culturable enterococci were enumerated by membrane filtration, and PCR was used to detect three MST markers targeting domestic sewage: human-associated Bacteroides (HF183), Methanobrevibacter smithii and human polyomaviruses BK and JC (HPyVs). Detection of sewage markers in surface waters was significantly associated with higher enterococci levels and with exceedance of the recreational water quality standard in four or three regions, respectively. Sewage markers were frequently co-detected in single samples, e.g., M. smithii and HF183 were co-detected in 81% of Louisiana samples, and HPyVs and M. smithii were co-detected in over 40% of southwest Florida and Mississippi samples. This study demonstrates the robustness and inter-laboratory transferability of these three markers for the detection of pollution from domestic sewage in the waters impacting the Gulf of Mexico over a coastal range of over 1000 miles.


Subject(s)
Enterococcus/genetics , Feces/microbiology , Environmental Monitoring , Gulf of Mexico , Humans , Polymerase Chain Reaction , Water Microbiology
2.
J Microbiol Methods ; 89(1): 76-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22314021

ABSTRACT

Propidium monoazide (PMA) was used to differentiate live from membrane-compromised bacteria in PCR methods. We have adapted this technique for use on membrane-filtered water samples and determined its efficacy using qPCR. Independent labs at three institutions replicated these findings.


Subject(s)
Azides/metabolism , Bacteriological Techniques/methods , Cell Membrane/physiology , Enzyme Inhibitors/metabolism , Microbial Viability , Propidium/analogs & derivatives , Real-Time Polymerase Chain Reaction/methods , Filtration/methods , Propidium/metabolism , Reproducibility of Results , Water Microbiology
3.
J Water Health ; 9(4): 695-707, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22048429

ABSTRACT

Campylobacter spp. are the leading cause of gastroenteritis worldwide. Most human infections result from contaminated food; however, infections are also caused by recreational waterway contamination. Campylobacter culture is technically challenging and enumeration by culture-based methods is onerous. Thus, we employed qPCR to quantify Campylobacter spp. in fresh- and marine-water samples, raw sewage and animal feces. Multiplex PCR determined whether Campylobacter jejuni or C. coli, most commonly associated with human disease, were present in qPCR-positive samples. Campylobacters were detected in raw sewage, and in feces of all avian and mammalian species tested. Campylobacter-positive concentrations ranged from 68 to 2.3 × 106 cells per 500 mL. Although C. jejuni and C. coli were rare in waterways, they were prevalent in sewage and feces. Campylobacter-specific qPCR screening of environmental waters did not correlate with the regulatory EPA method 1600 (Enterococcus culture), nor with culture-independent, molecular-based microbial source tracking indicators, such as human polyomavirus, human Bacteroidales and Methanobrevibacter smithii. Our results suggest that neither the standard EPA method nor the newly proposed culture-independent methods are appropriate surrogates for Campylobacter contamination in water. Thus, assays for specific pathogens may be necessary to protect human health, especially in waters that are contaminated with sewage and animal feces.


Subject(s)
Campylobacter/isolation & purification , Culture , Feces/microbiology , Recreation , Water/chemistry , Animals , Campylobacter/genetics , Environmental Monitoring , Humans , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/isolation & purification , Sewage , Water Microbiology , Water Pollutants
4.
Water Res ; 43(19): 4812-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19595426

ABSTRACT

Water quality is frequently impacted by microbial pollution from human and animal feces. Microbial source tracking (MST) can identify dominant pollution sources and improve assessment of health risk compared to indicator bacteria alone. This study aims to standardize and validate MST methods across laboratories in coastal Gulf of Mexico states. Three laboratories evaluated library-independent MST methods for human sewage detection via conventional PCR: (1) human-associated Bacteroidales, (2) human polyomaviruses (HPyVs), and (3) Methanobrevibacter smithii. All methods detected targets in human sewage seeded into buffer, freshwater or marine water (100% sensitivity). The limit of detection (LOD) for human sewage was lowest for the Bacteroidales assay (10(-5)-10(-6) dilution). LODs for HPyVs and M. smithii assays were similar to each other (10(-3)-10(-4)), but were higher than Bacteroidales. The HPyVs assay was 100% specific, showing no cross-reactivity to dog, cow, cat, bird, or wild animal feces among >300 samples from three Gulf Coast regions. The human Bacteroidales assay was 96% specific, but cross-reacted with 10% of dog and some chicken samples. The M. smithii assay was 98% specific with limited cross-reactivity with cow, dog and seagull samples. An experts' workshop concluded that all methods showed sufficient accuracy and reliability to move forward. SOPs will be distributed to collaborating laboratories for further inter-laboratory comparison, and field validation will occur in year 2.


Subject(s)
Environmental Monitoring/methods , Feces/microbiology , Seawater/microbiology , Water Pollutants/isolation & purification , Atlantic Ocean , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , DNA, Bacterial/genetics , Enterococcus faecalis/genetics , Enterococcus faecalis/isolation & purification , Environmental Monitoring/standards , Escherichia coli/genetics , Escherichia coli/isolation & purification , Methanobrevibacter/genetics , Methanobrevibacter/isolation & purification , Polymerase Chain Reaction , Sewage/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...