Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(5): 053001, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38364169

ABSTRACT

We investigate the interaction between nonclassical light with a tunable multiphoton component and a highly nonlinear medium based on cold Rydberg atoms. The nonclassical field emitted by a DLCZ quantum memory is stored using Rydberg electromagnetically induced transparency, experiencing strong nonlinear response due to the dipole blockade. We show that the storage efficiency in the Rydberg ensemble decreases as a function of the multiphoton strength of the input field, as a result of the nonlinearity. We also show that the autocorrelation function g^{(2)}(0) of the retrieved field after storage in the Rydberg state is considerably reduced, leading to the first demonstration of single photon filtering with nonclassical input light. Finally, we develop a simple simulation that allows us to model the effect of our medium on the input state. This work is a step towards matter-mediated photon-photon interactions with nonclassical light.

2.
Phys Rev Lett ; 124(21): 210504, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32530694

ABSTRACT

Future quantum repeater architectures, capable of efficiently distributing information encoded in quantum states of light over large distances, will benefit from multiplexed photonic quantum memories. In this work we demonstrate a temporally multiplexed quantum repeater node in a laser-cooled cloud of ^{87}Rb atoms. We employ the Duan-Lukin-Cirac-Zoller protocol where pairs of photons and single collective spin excitations (so-called spin waves) are created in several temporal modes using a train of write pulses. To make the spin waves created in different temporal modes distinguishable and enable selective readout, we control the dephasing and rephasing of the spin waves by a magnetic field gradient, which induces a controlled reversible inhomogeneous broadening of the involved atomic hyperfine levels. We demonstrate that by embedding the atomic ensemble inside a low finesse optical cavity, the additional noise generated in multimode operation is strongly suppressed. By employing feed forward readout, we demonstrate distinguishable retrieval of up to 10 temporal modes. For each mode, we prove nonclassical correlations between the first and second photon. Furthermore, an enhancement in rates of correlated photon pairs is observed as we increase the number of temporal modes stored in the memory. The reported capability is a key element of a quantum repeater architecture based on multiplexed quantum memories.

SELECTION OF CITATIONS
SEARCH DETAIL
...