Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Electrophoresis ; 43(16-17): 1784-1798, 2022 09.
Article in English | MEDLINE | ID: mdl-35753078

ABSTRACT

Cancer is a highly heterogenous disease that requires precise detection tools and active surveillance methods. Liquid biopsy assays provide an agnostic way to follow the complex trajectory of cancer, providing better patient stratification tools for optimized treatment. Here, we present the development of a low-volume liquid biopsy assay called cyc-DEP (cyclic immunofluorescent imaging on dielectrophoretic chip) to profile biomarkers collected on a dielectrophoretic microfluidic chip platform. To enable on-chip cyclic imaging, we optimized a fluorophore quenching method and sequential rounds of on-chip staining with fluorescently conjugated primary antibodies. cyc-DEP allows for the quantification of a multiplex array of proteins using 25 µl of a patient plasma sample. We utilized nanoparticles from a prostate adenocarcinoma (LNCaP) cell line and a panel of six target proteins to develop our proof-of-concept technique. We then used cyc-DEP to quantify blood plasma levels of target proteins from healthy individuals, low-grade and high-grade prostate cancer patients (n = 3 each) in order to demonstrate that our platform is suitable for liquid biopsy analysis in its present form. To ensure accurate quantification of signal intensities and comparisons between different samples, we incorporated a signal intensity normalization method (fluorescent beads) and a custom signal intensity quantification algorithm that account for the distribution of signal across hundreds of collection regions on each chip. Our technique enabled a threefold improvement in multiplicity for detecting proteins associated with fluid samples, opening doors for early detection, and active surveillance through quantification of a multiplex array of biomarkers from low-volume liquid biopsies.


Subject(s)
Biological Assay , Microfluidics , Electrophoresis/methods , Fluorescent Antibody Technique , Humans , Staining and Labeling
2.
Electrophoresis ; 42(5): 539-564, 2021 03.
Article in English | MEDLINE | ID: mdl-33191521

ABSTRACT

The 20th century has seen tremendous innovation of dielectrophoresis (DEP) technologies, with applications being developed in areas ranging from industrial processing to micro- and nanoscale biotechnology. From 2010 to present day, there have been 981 publications about DEP. Of over 2600 DEP patents held by the United States Patent and Trademark Office, 106 were filed in 2019 alone. This review focuses on DEP-based technologies and application developments between 2010 and 2020, with an aim to highlight the progress and to identify potential areas for future research. A major trend over the last 10 years has been the use of DEP techniques for biological and clinical applications. It has been used in various forms on a diverse array of biologically derived molecules and particles to manipulate and study them including proteins, exosomes, bacteria, yeast, stem cells, cancer cells, and blood cells. DEP has also been used to manipulate nano- and micron-sized particles in order to fabricate different structures. The next 10 years are likely to see the increase in DEP-related patent applications begin to result in a greater level of technology commercialization. Also during this time, innovations in DEP technology will likely be leveraged to continue the existing trend to further biological and medical-focused applications as well as applications in microfabrication. As a tool leveraged by engineering and imaginative scientific design, DEP offers unique capabilities to manipulate small particles in precise ways that can help solve problems and enable scientific inquiry that cannot be addressed using conventional methods.


Subject(s)
Biotechnology , Electrophoresis , Nanotechnology , Animals , Cell Separation , Cells, Cultured , Humans , Mice , Particle Size
3.
Front Neurol ; 11: 685, 2020.
Article in English | MEDLINE | ID: mdl-32760343

ABSTRACT

Background: Technology platforms that afford biomarker discovery in patients suffering from traumatic brain injury (TBI) remain an unmet medical need. Here, we describe an observational pilot study to explore the utility of an alternating current electrokinetic (ACE) microchip device in this context. Methods: Blood samples were collected from participating subjects with and without minor TBI. Plasma levels of glial fibrillary acidic protein (GFAP), Tau, ubiquitin C-terminal hydrolase L1 (UCH-L1), and cell-free DNA (cfDNA) were determined in subjects with and without minor TBI using ACE microchip device followed by on-chip immunofluorescent analysis. Post-concussive symptoms were assessed using the Rivermead Post Concussion Symptoms Questionnaire (RPCSQ) at one-month follow-up. Results: Highest levels of GFAP, UCH-L1, and Tau were seen in two minor TBI subjects with abnormality on head computed tomography (CT). In patients without abnormal head CT, Tau and GFAP levels discriminated between plasma from minor-TBI and non-TBI patients, with sensitivity and specificity of 64-72 and 50%, respectively. Plasma GFAP, UCH-L1, and Tau strongly correlated with the cumulative RPCSQ score. Plasma UCH-L1 and GFAP exhibited highest correlation to sensitivity to noise and light (r = 0.96 and 0.91, respectively, p < 0.001). Plasma UCH-L1 and Tau showed highest correlation with headache (r = 0.74 and 0.78, respectively, p < 0.001), sleep disturbance (r = 0.69 and 0.84, respectively, p < 0.001), and cognitive symptoms, including forgetfulness (r = 0.76 and 0.74, respectively, p < 0.001), poor concentration (r = 0.68 and 0.76, respectively, p < 0.001), and time required for information processing (r = 0.77 and 0.81, respectively, p < 0.001). cfDNA exhibited a strong correlation with depression (r = 0.79, p < 0.01) and dizziness (r = 0.69, p < 0.01). While cfDNA demonstrated positive correlation with dizziness and depression (r = 0.69 and 0.79, respectively, p < 0.001), no significant correlation was observed between cumulative RPCSQ and cfDNA (r = 0.07, p = 0.81). Conclusion: We provide proof-of-principle results supporting the utility of ACE microchip for plasma biomarker analysis in patients with minor TBI.

4.
J Am Coll Nutr ; 38(6): 485-492, 2019 08.
Article in English | MEDLINE | ID: mdl-30964398

ABSTRACT

Objective: To examine resting and postprandial peripheral protease activity in healthy controls and individuals with type 2 diabetes mellitus (T2DM) and pre-T2DM. Methods: Individuals with T2DM or pre-T2DM and healthy controls (mean age 55.8 years) were studied before and for a span of 300 minutes following a single high-calorie McDonald's breakfast. Metalloproteases-2/-9 (MMP-2/-9), elastase, and trypsin activities were assessed in whole blood before and following the meal using a novel high-precision electrophoretic platform. Also assessed were circulating levels of inflammatory biomarkers and insulin receptor density on peripheral blood mononuclear cells (PBMCs) in relationship to protease activity. Results: Premeal MMP-2/-9 and elastase activity levels in T2DM and in pre-T2DM participants were significantly elevated as compared to controls. The T2DM group showed a significant increase in elastase activity 15 minutes after the meal; elastase activity continued to increase to the 30-minute time point (p < 0.01). In control participants, MMP-2/-9, elastase, and trypsin were significantly increased at 15 minutes after the meal (p < 0.05) and returned to premeal values within a period of approximately 30 to 60 minutes post meal. PBMCs incubated for 1 hour with plasma from T2DM and pre-T2DM participants had significantly lower levels of insulin receptor density compared to those incubated with plasma from control participants (p < 0.001). Conclusions: The results of this study suggest that individuals with T2DM and pre-T2DM have higher resting systemic protease activity than nonsymptomatic controls. A single high-calorie/high-carbohydrate meal results in further elevations of protease activity in the systemic circulation of T2DM and pre-T2DM, as well as in healthy controls. The protease activity in turn can lead to a downregulation of insulin receptor density, potentially supporting a state of insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Peptide Hydrolases/blood , Postprandial Period/physiology , Receptor, Insulin , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/physiopathology , Female , Humans , Male , Middle Aged , Receptor, Insulin/blood , Receptor, Insulin/metabolism , Rest/physiology
5.
ACS Nano ; 12(4): 3311-3320, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29570265

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) typically has nonspecific symptoms and is often found too late to treat. Because diagnosis of PDAC involves complex, invasive, and expensive procedures, screening populations at increased risk will depend on developing rapid, sensitive, specific, and cost-effective tests. Exosomes, which are nanoscale vesicles shed into blood from tumors, have come into focus as valuable entities for noninvasive liquid biopsy diagnostics. However, rapid capture and analysis of exosomes with their protein and other biomarkers have proven difficult. Here, we present a simple method integrating capture and analysis of exosomes and other extracellular vesicles directly from whole blood, plasma, or serum onto an AC electrokinetic microarray chip. In this process, no pretreatment or dilution of sample is required, nor is it necessary to use capture antibodies or other affinity techniques. Subsequent on-chip immunofluorescence analysis permits specific identification and quantification of target biomarkers within as little as 30 min total time. In this initial validation study, the biomarkers glypican-1 and CD63 were found to reflect the presence of PDAC and thus were used to develop a bivariate model for detecting PDAC. Twenty PDAC patient samples could be distinguished from 11 healthy subjects with 99% sensitivity and 82% specificity. In a smaller group of colon cancer patient samples, elevated glypican-1 was observed for metastatic but not for nonmetastatic disease. The speed and simplicity of ACE exosome capture and on-chip biomarker detection, combined with the ability to use whole blood, will enable seamless "sample-to-answer" liquid biopsy screening and improve early stage cancer diagnostics.


Subject(s)
Biomarkers, Tumor/blood , Exosomes/chemistry , Fluorescent Antibody Technique , Pancreatic Neoplasms/blood , Humans , Kinetics , Pancreatic Neoplasms/diagnosis
6.
Nat Commun ; 9(1): 281, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348493

ABSTRACT

DNA has been employed to either store digital information or to perform parallel molecular computing. Relatively unexplored is the ability to combine DNA-based memory and logical operations in a single platform. Here, we show a DNA tri-level cell non-volatile memory system capable of parallel random-access writing of memory and bit shifting operations. A microchip with an array of individually addressable electrodes was employed to enable random access of the memory cells using electric fields. Three segments on a DNA template molecule were used to encode three data bits. Rapid writing of data bits was enabled by electric field-induced hybridization of fluorescently labeled complementary probes and the data bits were read by fluorescence imaging. We demonstrated the rapid parallel writing and reading of 8 (23) combinations of 3-bit memory data and bit shifting operations by electric field-induced strand displacement. Our system may find potential applications in DNA-based memory and computations.


Subject(s)
Computers, Molecular , DNA/chemistry , Information Storage and Retrieval , Biomimetics , DNA/genetics , Equipment Design , Hybridization, Genetic , Oligonucleotide Array Sequence Analysis , Signal Processing, Computer-Assisted
7.
ACS Appl Mater Interfaces ; 9(48): 42302-42312, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29124937

ABSTRACT

Recently, instead of indium tin oxide, the random mesh pattern of metallic nanowires for flexible transparent conducting electrodes (FTCEs) has received a great amount of interest due to its flexibility, low resistance, reasonable price, and compliant processes. Mostly, nanowires for FTCEs are fabricated by spray or mayer coating methods. However, the metallic nanowire layer of FTCEs, which is fabricated by these methods, has a spiked surface roughness and low junction contact between the nanowires that lead to their high sheet resistance value. Also, the nanowires on FTCEs are easy to peel-off through exterior forces such as bending, twisting, or contact. To solve these problems, we demonstrate novel methods through which silver nanowires (AgNWs) are deposited onto a nanosize porous nitrocellulose (NC) substrate by electrophoretic deposition (EPD) and an opaque and porous substrate. Respectively, through dimethyl sulfoxide treatment, AgNWs on NC (AgNW/NC) is changed to the transparent and nonporous FTCEs. This enhances the junction contact of the AgNWs by EPD and also allows a permanent attachment of AgNWs onto the substrate. To show the mechanical strength of the AgNWs on the transparent nitrocellulose (AgNW/TNC), it is tested by applying diverse mechanical stress, such as a binding test (3M peel-off), compressing, bending, twisting, and folding. Next, we demonstrate that AgNW/TNC can be effectively implanted onto normal newspapers and papers. As paper electronics, light-emitting diodes, which are laminated onto paper, are successfully operated through a basic AgNW/TNC strip circuit. Finally, it is demonstrated that AgNW/TNC and AgNW/TNC on paper are water resistant for 15 min due to the insulation properties of the nonporous substrate.

8.
ACS Nano ; 11(7): 6641-6651, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28671449

ABSTRACT

Exosomes found in the circulation are a primary source of important cancer-related RNA and protein biomarkers that are expected to lead to early detection, liquid biopsy, and point-of-care diagnostic applications. Unfortunately, due to their small size (50-150 nm) and low density, exosomes are extremely difficult to isolate from plasma. Current isolation methods are time-consuming multistep procedures that are unlikely to translate into diagnostic applications. To address this issue, we demonstrate the ability of an alternating current electrokinetic (ACE) microarray chip device to rapidly isolate and recover glioblastoma exosomes from undiluted human plasma samples. The ACE device requires a small plasma sample (30-50 µL) and is able to concentrate the exosomes into high-field regions around the ACE microelectrodes within 15 min. A simple buffer wash removes bulk plasma materials, leaving the exosomes concentrated on the microelectrodes. The entire isolation process and on-chip fluorescence analysis is completed in less than 30 min which enables subsequent on-chip immunofluorescence detection of exosomal proteins, and provides viable mRNA for RT-PCR analysis. These results demonstrate the ability of the ACE device to streamline the process for isolation and recovery of exosomes, significantly reducing the number of processing steps and time required.


Subject(s)
Electrophoresis, Microchip/instrumentation , Exosomes/pathology , Microarray Analysis/instrumentation , Neoplasms/diagnosis , Biomarkers, Tumor/blood , Biomarkers, Tumor/isolation & purification , Cell Line , Electrophoresis, Microchip/economics , Equipment Design , Exosomes/chemistry , Glioblastoma/blood , Glioblastoma/diagnosis , Glioblastoma/pathology , Humans , Microarray Analysis/economics , Microelectrodes , Neoplasms/blood , Neoplasms/pathology , Proteins/analysis , RNA/analysis , Time Factors
9.
Adv Mater ; 29(31)2017 Aug.
Article in English | MEDLINE | ID: mdl-28612514

ABSTRACT

A systematic strategy for designing structured nanomaterials is demonstrated through self-assembly of graphene quantum dots. The approach reveals that graphene derivatives at the nanoscale assemble into various architectures of nanocrystals in a binary solution system. The shapes of the nanocrystals continue to evolve in terms of the intimate association of organic molecules with the dispersion medium, obtaining a high index faceted superlattice. This facile synthetic process provides a versatile strategy for designing particles to new structured materials systems, exploiting the crystallization of layered graphitic carbon structures within single crystals.

10.
ACS Appl Mater Interfaces ; 9(1): 22-28, 2017 01 11.
Article in English | MEDLINE | ID: mdl-28032747

ABSTRACT

We demonstrate a DNA double-write process that uses UV to pattern a uniquely designed DNA write material, which produces two distinct binding identities for hybridizing two different complementary DNA sequences. The process requires no modification to the DNA by chemical reagents and allows programmed DNA self-assembly and further UV patterning in the UV exposed and nonexposed areas. Multilayered DNA patterning with hybridization of fluorescently labeled complementary DNA sequences, biotin probe/fluorescent streptavidin complexes, and DNA patterns with 500 nm line widths were all demonstrated.


Subject(s)
Nanofibers/chemistry , DNA , DNA, Complementary , Indicators and Reagents , Nucleic Acid Hybridization , Streptavidin
11.
Electrophoresis ; 37(15-16): 2248-56, 2016 08.
Article in English | MEDLINE | ID: mdl-27271700

ABSTRACT

Present coagulation assays fail to detect mild coagulation disorders, while thrombin-generation (TG) assays solve this problem. However, most of them only work with threated blood samples, which makes them labor intensive, time consuming, unreliable, and expensive. We have developed a TG electrophoretic assay that uses a thrombin specific charge-changing fluorescent peptide substrate, electrophoretic separation, and requires a drop of blood. The limit of detection of the assay was 1.97 nM in phosphate buffer saline and 6.82 nM in citrated whole blood. The assay was used to determine the TG in whole blood from healthy volunteers (n = 6, one aspirin user), over 30 min, after the blood was drawn; the TG increased from a baseline level of 2 × 10(6) RFU to 1.2 × 10(13) RFU. The lag time between the blood draw and initial burst of TG was 6 min for the volunteers (n = 5) and 15 min for the aspirin user. Specificity of the assay was evaluated by reacting our substrate with the heparinized blood samples and other proteases. The TG electrophoretic assay was designed and tested in the whole human blood, requiring no sample preparation, 5 µL of blood, 45 min, and it detected differences in coagulation patterns between a volunteer taking aspirin and non-aspirin users.


Subject(s)
Blood Coagulation Tests/methods , Electrophoresis/methods , Aspirin/pharmacology , Blood Coagulation/drug effects , Humans , Limit of Detection , Sensitivity and Specificity , Thrombin Time
12.
Analyst ; 141(8): 2371-5, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-26985458

ABSTRACT

Dimerization and resultant quenching of donor and acceptor dyes conjugated on DNA causes loss of fluorescent resonant energy transfer (FRET) efficiency. However, when complexed with surfactants and divalent metal ions, sheathing effects insulate and shield the DNA structures, reducing dimerization and quenching which leads to significant enhancement of FRET efficiency.


Subject(s)
DNA/chemistry , Fluorescence Resonance Energy Transfer/methods , Metals/chemistry , Surface-Active Agents/chemistry , Base Sequence , DNA/genetics , Xanthenes/chemistry
13.
J Biophotonics ; 9(1-2): 49-54, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26530400

ABSTRACT

The effect of cetyl-trimethylammonium bromide (CTAB) on enhancing the fluorescence resonance energy transfer (FRET) between two dye-conjugated DNA strands was studied using fluorescence emission spectroscopy and dynamic light scattering (DLS). For hybridized DNA where one strand is conjugated with a TAMRA donor and the other with a TexasRed acceptor, increasing the concentration of CTAB changes the fluorescence emission properties and improves the FRET transfer efficiency through changes in the polarity of the solvent, neutralization of the DNA backbone and micelle formation. For the DNA FRET system without CTAB, the DNA hybridization leads to contact quenching between TAMRA donor and TexasRed acceptor producing reduced donor emission and only a small increase in acceptor emission. At 50 µM CTAB, however, the sheathing and neutralization of the dye-conjugated dsDNA structure significantly reduces quenching by DNA bases and dye interactions, producing a large increase in FRET efficiency, which is almost four fold higher than without CTAB.


Subject(s)
Cetrimonium Compounds/chemistry , DNA/chemistry , Fluorescence Resonance Energy Transfer/methods , Surface-Active Agents/chemistry , Cetrimonium , Fluorescent Dyes/chemistry , Models, Molecular , Nucleic Acid Conformation , Nucleic Acid Hybridization , Xanthenes/chemistry
14.
J Biomol Struct Dyn ; 34(3): 463-74, 2016.
Article in English | MEDLINE | ID: mdl-25921736

ABSTRACT

While considerable attempts have been made to recreate the high turnover rates of enzymes using synthetic enzyme mimics, most have failed and only a few have produced minimal reaction rates that can barely be considered catalytic. One particular approach we have focused on is the use of short-sequence peptides that contain key catalytic groups in close proximity. In this study, we designed six different peptides and tested their ability to mimic the catalytic mechanism of the cysteine proteases. Acetylation and deacylation by Ellman's Reagent trapping experiments showed the importance of having phenylalanine groups surrounding the catalytic sites in order to provide greater proximity between the cysteine, histidine, and aspartate amino acid R-groups. We have also carried out all-atom molecular dynamics simulations to determine the distance between these catalytic groups and the overall mechanical flexibility of the peptides. We found strong correlations between the magnitude of fluctuations in the Cys-His distance, which determines the flexibility and interactions between the cysteine thiol and histidine imidazole groups, and the deacylation rate. We found that, in general, shorter Cys-His distance fluctuations led to a higher deacylation rate constant, implying that greater confinement of the two residues will allow a higher frequency of the acetyl exchange between the cysteine thiol and histidine imidazole R-groups. This may be the key to future design of peptide structures with molecular mechanical properties that lead to viable enzyme mimics.


Subject(s)
Enzymes/chemistry , Molecular Dynamics Simulation , Molecular Mimicry , Peptides/chemistry , Acetylation , Cysteine/chemistry , Enzymes/metabolism , Histidine/chemistry , Hydrolysis , Models, Molecular , Molecular Conformation , Peptides/metabolism
15.
Int J Hematol Oncol ; 5(1): 27-35, 2016 May.
Article in English | MEDLINE | ID: mdl-30302201

ABSTRACT

AIM: Circulating cell free (ccf) DNA contains information about mutations affecting chronic lymphocytic leukemia (CLL). The complexity of isolating DNA from plasma inhibits the development of point-of-care diagnostics. Here, we introduce an electrokinetic method that enables rapid recovery of DNA from plasma. MATERIALS & METHODS: ccf-DNA was isolated from 25 µl of CLL plasma using dielectrophoresis. The DNA was used for PCR amplification, sequencing and analysis. RESULTS: The ccf-DNA collected from plasma of 5 CLL patients revealed identical mutations to those previously identified by extracting DNA from CLL cells from the same patients. CONCLUSION: Rapid dielectrophoresis isolation of ccf-DNA directly from plasma provides sufficient amounts of DNA to use for identification of point mutations in genes associated with CLL progression.

16.
Small ; 11(38): 5088-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26274918

ABSTRACT

The effect of complex biological fluids on the surface and structure of nanoparticles is a rapidly expanding field of study. One of the challenges holding back this research is the difficulty of recovering therapeutic nanoparticles from biological samples due to their small size, low density, and stealth surface coatings. Here, the first demonstration of the recovery and analysis of drug delivery nanoparticles from undiluted human plasma samples through the use of a new electrokinetic platform technology is presented. The particles are recovered from plasma through a dielectrophoresis separation force that is created by innate differences in the dielectric properties between the unaltered nanoparticles and the surrounding plasma. It is shown that this can be applied to a wide range of drug delivery nanoparticles of different morphologies and materials, including low-density nanoliposomes. These recovered particles can then be analyzed using different methods including scanning electron microscopy to monitor surface and structural changes that result from plasma exposure. This new recovery technique can be broadly applied to the recovery of nanoparticles from high conductance fluids in a wide range of applications.


Subject(s)
Drug Delivery Systems/methods , Nanoparticles/chemistry , Plasma/chemistry , Electrodes , Electrophoresis , Humans , Image Processing, Computer-Assisted , Microfluidics , Nanoparticles/ultrastructure , Silicon Dioxide/chemistry , Spectrophotometry, Ultraviolet
17.
Small ; 11(38): 5041-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26222211

ABSTRACT

Using an aqueous single reactor arc discharge process with oil-in-water emulsions allows production of 2D multilayered graphenes (MLGs and 3D graphene-based crumpled/sphere-like particles with low levels of defects). The confinement forces to create 3D particles from 2D MLGs are estimated to be 2.5 µN for crumpled particles and 70 µN for spherical hollow particles.

18.
Expert Rev Mol Diagn ; 15(9): 1187-200, 2015.
Article in English | MEDLINE | ID: mdl-26189641

ABSTRACT

As we move into the era of individualized cancer treatment, the need for more sophisticated cancer diagnostics has emerged. Cell-free (cf) nucleic acids (cf-DNA, cf-RNA) and other cellular nanoparticulates are now considered important and selective biomarkers. There is great hope that blood-borne cf-nucleic acids can be used for 'liquid biopsies', replacing more invasive tissue biopsies to analyze cancer mutations and monitor therapy. Conventional techniques for cf-nucleic acid biomarker isolation from blood are generally time-consuming, complicated and expensive. They require relatively large blood samples, which must be processed to serum or plasma before isolation of biomarkers can proceed. Such cumbersome sample preparation also limits the widespread use of powerful, downstream genomic analyses, including PCR and DNA sequencing. These limitations also preclude rapid, point-of-care diagnostic applications. Thus, new technologies that allow rapid isolation of biomarkers directly from blood will permit seamless sample-to-answer solutions that enable next-generation point-of-care molecular diagnostics.


Subject(s)
Biomarkers, Tumor/blood , Neoplasms/blood , Neoplasms/diagnosis , Humans , Molecular Diagnostic Techniques , Nucleic Acids/blood , Point-of-Care Systems
19.
Electrophoresis ; 36(9-10): 1107-14, 2015 May.
Article in English | MEDLINE | ID: mdl-25780998

ABSTRACT

Most dielectrophoretic (DEP) separations of cells, nanoparticles, and other entities are carried out on microelectrode arrays or in microfluidic device formats. Less work has been directed at designing pipette-type formats that would allow dipping into and recovering specific analytes from samples in microtiter plate formats. In order to address this important area, we have fabricated micropipette tip devices containing a 2% agarose gel plug, a buffer chamber, and platinum electrode as the DEP collection device, to be used in combination with separate sample wells that contain a circular gold electrode. We demonstrated that 200 nm fluorescent nanoparticles could be isolated into DEP high-field regions and separated from 10 µm fluorescent microbeads in high conductance buffer (1× PBS) by applying an alternating current at 10 kHz with a peak-to-peak voltage (Vpp) of 160 Vpp. The collected nanoparticles were then transferred to a new buffer solution. We also demonstrated the DEP isolation and separation of genomic DNA (>50 kbps) from the 10 µm microbeads in high conductance buffer (1× PBS) with transfer of collected DNA to another solution.


Subject(s)
DNA/isolation & purification , Electrophoresis/instrumentation , Microarray Analysis/instrumentation , Nanoparticles/chemistry , DNA/chemistry , Electrophoresis/methods , Equipment Design , Finite Element Analysis , Microarray Analysis/methods
20.
J Nanosci Nanotechnol ; 15(11): 9287-90, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26726684

ABSTRACT

Traditional methods have limitations for the fabrication of micro-ordered batteries for use in a variety of applications including biomedical and healthcare devices. A new micro-nanofabrication method and system that combines deposition, layering, and patterning processes has now been developed for production of micro-ordered energy storage battery devices and materials. Here, we show an electrical field directed (EFD) deposition array device with a 500 µm active assembly area containing 25 microelectrodes. Using EFD assembly, we demonstrated the patterned deposition of graphite mixtures in water-based and solvent-based solutions. The graphite mixture patterns were confirmed by SEM imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...