Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nutrients ; 14(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35406020

ABSTRACT

Free zinc is considered to be the exchangeable and biological active form of zinc in serum, and is discussed to be a suitable biomarker for alterations in body zinc homeostasis and related diseases. Given that coronavirus disease 2019 (COVID-19) is characterized by a marked decrease in total serum zinc, and clinical data indicate that zinc status impacts the susceptibility and severity of the infection, we hypothesized that free zinc in serum might be altered in response to SARS-CoV-2 infection and may reflect disease severity. To test this hypothesis, free zinc concentrations in serum samples of survivors and nonsurvivors of COVID-19 were analyzed by fluorometric microassay. Similar to the reported total serum zinc deficit measured by total reflection X-ray fluorescence, free serum zinc in COVID-19 patients was considerably lower than that in control subjects, and surviving patients displayed significantly higher levels of free zinc than those of nonsurvivors (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0004). In contrast to recovering total zinc concentrations (r = 0.706, p < 0.001) or the declining copper−zinc ratio (r = −0.646; p < 0.001), free zinc concentrations remained unaltered with time in COVID-19 nonsurvivors. Free serum zinc concentrations were particularly low in male as compared to female patients (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0003). This is of particular interest, as the male sex is described as a risk factor for severe COVID-19. Overall, results indicate that depressed free serum zinc levels are associated with increased risk of death in COVID-19, suggesting that free zinc may serve as a novel prognostic marker for the severity and course of COVID-19.


Subject(s)
COVID-19 , Biomarkers , Female , Humans , Male , SARS-CoV-2 , Severity of Illness Index , Zinc
2.
Redox Biol ; 50: 102242, 2022 04.
Article in English | MEDLINE | ID: mdl-35139480

ABSTRACT

The essential trace element selenium (Se) is of central importance for human health and particularly for a regular functioning of the immune system. In the context of the current pandemic, Se deficiency in patients with COVID-19 correlated with disease severity and mortality risk. Selenium has been reported to be associated with the immune response following vaccination, but it is unknown whether this also applies to SARS-CoV-2 vaccines. In this observational study, adult health care workers (n = 126) who received two consecutive anti-SARS-CoV-2 vaccinations by BNT162b2 were followed for up to 24 weeks, with blood samples collected at the first and second dose and at three and 21 weeks after the second dose. Serum SARS-CoV-2 IgG titres, neutralising antibody potency, total Se and selenoprotein P concentrations, and glutathione peroxidase 3 activity were quantified. All three biomarkers of Se status were significantly correlated at all the time points, and participants who reported supplemental Se intake displayed higher Se concentrations. SARS-CoV-2 IgG titres and neutralising potency were highest three weeks after the second dose and decreased towards the last sampling point. The humoral immune response was not related to any of the three Se status biomarkers. Supplemental Se intake had no effect at any time point on the vaccination response as measured by serum SARS-CoV-2 IgG levels or neutralising potency. Overall, no association was found between Se status or supplemental Se intake and humoral immune response to COVID-19 mRNA vaccination.


Subject(s)
COVID-19 , Selenium , Adult , BNT162 Vaccine , COVID-19 Vaccines , Humans , Immunity, Humoral , RNA, Messenger , SARS-CoV-2 , Vaccination
3.
J Clin Med ; 10(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34945273

ABSTRACT

BACKGROUND: The optimal timing of surgical therapy for traumatic spinal cord injury (TSCI) remains unclear. The purpose of this study is to evaluate the impact of "ultra-early" (<4 h) versus "early" (4-24 h) time from injury to surgery in terms of the likelihood of neurologic recovery. METHODS: The effect of surgery on neurological recovery was investigated by comparing the assessed initial and final values of the American Spinal Injury Association (ASIA) Impairment Scale (AIS). A post hoc analysis was performed to gain insight into different subgroup regeneration behaviors concerning neurological injury levels. RESULTS: Datasets from 69 cases with traumatic spinal cord injury were analyzed. Overall, 19/46 (41.3%) patients of the "ultra-early" cohort saw neurological recovery compared to 5/23 (21.7%) patients from the "early" cohort (p = 0.112). The subgroup analysis revealed differences based on the neurological level of injury (NLI) of a patient. An optimal cutpoint for patients with a cervical lesion was estimated at 234 min. Regarding the prediction of neurological improvement, sensitivity was 90.9% with a specificity of 68.4%, resulting in an AUC (area under the curve) of 84.2%. In thoracically and lumbar injured cases, the estimate was lower, ranging from 284 (thoracic) to 245 min (lumbar) with an AUC of 51.6% and 54.3%. CONCLUSIONS: Treatment within 24 h after TSCI is associated with neurological recovery. Our hypothesis that intervention within 4 h is related to an improvement in the neurological outcome was not confirmed in our collective. In a clinical context, this suggests that after TSCI there is a time frame to get the right patient to the right hospital according to advanced trauma life support (ATLS) guidelines.

4.
Biomedicines ; 9(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34829945

ABSTRACT

The immune response to vaccination with SARS-CoV-2 vaccines varies greatly from person to person. In addition to age, there is evidence that certain micronutrients influence the immune system, particularly vitamin D. Here, we analysed SARS-CoV-2 IgG and neutralisation potency along with 25-hydroxy-cholecalciferol [25(OH)D] concentrations in a cohort of healthy German adults from the time of vaccination over 24 weeks. Contrary to our expectations, no significant differences were found in the dynamic increase or decrease of SARS-CoV-2 IgG as a function of the 25(OH)D status. Furthermore, the response to the first or second vaccination, the maximum SARS-CoV-2 IgG concentrations achieved, and the decline in SARS-CoV-2 IgG concentrations over time were not related to 25(OH)D status. We conclude that the vaccination response, measured as SARS-CoV-2 IgG concentration, does not depend on 25(OH)D status in healthy adults with moderate vitamin D status.

5.
Nutrients ; 13(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072977

ABSTRACT

The trace element copper (Cu) is part of our nutrition and essentially needed for several cuproenzymes that control redox status and support the immune system. In blood, the ferroxidase ceruloplasmin (CP) accounts for the majority of circulating Cu and serves as transport protein. Both Cu and CP behave as positive, whereas serum selenium (Se) and its transporter selenoprotein P (SELENOP) behave as negative acute phase reactants. In view that coronavirus disease (COVID-19) causes systemic inflammation, we hypothesized that biomarkers of Cu and Se status are regulated inversely, in relation to disease severity and mortality risk. Serum samples from COVID-19 patients were analysed for Cu by total reflection X-ray fluorescence and CP was quantified by a validated sandwich ELISA. The two Cu biomarkers correlated positively in serum from patients with COVID-19 (R = 0.42, p < 0.001). Surviving patients showed higher mean serum Cu and CP concentrations in comparison to non-survivors ([mean+/-SEM], Cu; 1475.9+/-22.7 vs. 1317.9+/-43.9 µg/L; p < 0.001, CP; 547.2.5 +/- 19.5 vs. 438.8+/-32.9 mg/L, p = 0.086). In contrast to expectations, total serum Cu and Se concentrations displayed a positive linear correlation in the patient samples analysed (R = 0.23, p = 0.003). Serum CP and SELENOP levels were not interrelated. Applying receiver operating characteristics (ROC) curve analysis, the combination of Cu and SELENOP with age outperformed other combinations of parameters for predicting risk of death, yielding an AUC of 95.0%. We conclude that the alterations in serum biomarkers of Cu and Se status in COVID-19 are not compatible with a simple acute phase response, and that serum Cu and SELENOP levels contribute to a good prediction of survival. Adjuvant supplementation in patients with diagnostically proven deficits in Cu or Se may positively influence disease course, as both increase in survivors and are of crucial importance for the immune response and antioxidative defence systems.


Subject(s)
COVID-19/blood , COVID-19/mortality , Copper/blood , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Cross-Sectional Studies , Disease-Free Survival , Female , Humans , Longitudinal Studies , Male , Middle Aged , Selenium/blood , Selenoprotein P/blood , Survival Rate
6.
Front Neurosci ; 15: 680240, 2021.
Article in English | MEDLINE | ID: mdl-34140879

ABSTRACT

Introduction: Traumatic spinal cord injury (TSCI) presents a diagnostic challenge as it may have dramatic consequences for the affected patient. Additional biomarkers are needed for improved care and personalized therapy. Objective: Serum selenium binding protein 1 (SELENBP1) has been detected in myocardial infarction, reflecting hypoxic tissue damage and recovery odds. As SELENBP1 is usually not detected in the serum of healthy subjects, we tested the hypothesis that it may become detectable in TSCI and indicate tissue damage and regeneration odds. Methods: In this prospective observational study, patients with comparable injuries were allocated to three groups; vertebral body fractures without neurological impairment (control "C"), TSCI without remission ("G0"), and TSCI with signs of remission ("G1"). Consecutive serum samples were available from different time points and analyzed for SELENBP1 by sandwich immunoassay, for trace elements by X-ray fluorescence and for cytokines by multiplex immunoassays. Results: Serum SELENBP1 was elevated at admission in relation to the degree of neurological impairment [graded as A, B, C, or D according to the American Spinal Injury Association (AISA) impairment scale (AIS)]. Patients with the most severe neurological impairment (classified as AIS A) exhibited the highest SELENBP1 concentrations (p = 0.011). During the first 3 days, SELENBP1 levels differed between G0 and G1 (p = 0.019), and dynamics of SELENBP1 correlated to monocyte chemoattractant protein 1, chemokine ligand 3 and zinc concentrations. Conclusion: Circulating SELENBP1 concentrations are related to the degree of neurological impairment in TSCI and provide remission odds information. The tight correlation of SELENBP1 with CCL2 levels provides a novel link between Se metabolism and immune cell activation, with potential relevance for neurological damage and regeneration processes, respectively.

7.
Brain ; 144(10): 3159-3174, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34022039

ABSTRACT

Monocytes and lymphocytes elicit crucial activities for the regenerative processes after various types of injury. The survival of neurons exposed to mechanical and oxidative stress after traumatic spinal cord injury depends on a multitude of factors. In this study, we sought to evaluate a correlation between remission after traumatic spinal cord injury and the dynamics of monocyte subsets in respect to the lymphocytes' responsive potential, cytokine expression, patterns of trace element concentration and clinical covariates. We examined prospectively 18 (three female, 15 male) patients after traumatic spinal cord injury. Blood samples were drawn at admission and 4 h, 9 h, 12 h, 1 and 3 days as well as 1 and 2 weeks and 1, 2 and 3 months after the trauma. Analysis of cytokines (CCL2, IL-10, enolase 2, CXCL12, TGF-ß1, TGF-ß2) was performed using a multiplex cytokine panel. Plasma trace element concentrations of selenium, copper and zinc were determined by total reflection X-ray fluorescence analysis; neopterin, selenoprotein P (SELENOP) and ceruloplasmin (CP) by enzyme-linked immunosorbent assay; and selenium binding protein 1 (SELENBP1) by luminometric immunoassay. The responsive potential of lymphocytes was assessed using transformation tests. The monocyte subsets (classical, intermediate, and non-classical) and expression of CD14, CD16, CXCR4 and intracellular IL-10 were identified using a multi-colour flow cytometry analysis. The dynamics of the cluster of intermediate CD14-/CD16+/IL10+/CXCR4int monocytes differed significantly between patients with an absence of neurological remission (G0) from those with an improvement (G1) by 1 or 2 American Spinal Injury Association Impairment Scale (AIS) steps (Kruskal-Wallis Test, P = 0.010, G0 < G1, AIS+: 1 < G1, AIS+: 2) in the first 24 h. These dynamics were associated inversely with an increase in enolase and SELENBP1 14 days after the injury. In the elastic net regularized model, we identified an association between the increase of a subpopulation of intermediate CD14-/CD16+/IL10+/CXCR4int monocytes and exacerbated immune response within 24 h after the injury. These findings were reflected in the consistently elevated response to mitogen stimulation of the lymphocytes of patients with significant neurological remission. Early elevated concentrations of CD14-/CD16+/IL10+/CXCR4int monocytes were related to higher odds of CNS regeneration and enhanced neurological remission. The cluster dynamics of CD14-/CD16+/IL10+/CXCR4int monocytes in the early-acute phase after the injury revealed a maximum of prognostic information regarding neurological remission (mean parameter estimate: 0.207; selection count: 818/1000 repetitions). We conclude that early dynamics in monocyte subsets allow a good prediction of recovery from traumatic spinal cord injury.


Subject(s)
Cytokines/blood , Monocytes/metabolism , Recovery of Function/physiology , Spinal Cord Injuries/blood , Spinal Cord Injuries/diagnosis , Adult , Female , Flow Cytometry/methods , Humans , Male , Middle Aged , Predictive Value of Tests , Prospective Studies
8.
J Inflamm Res ; 14: 995-1005, 2021.
Article in English | MEDLINE | ID: mdl-33790615

ABSTRACT

BACKGROUND: Occult infections (OI) lack typical inflammatory signs, making them challenging to diagnose. Uncertainty remains regarding OI's influence on the outcome of autologous bone grafting (ABG), and evidence-based recommendations regarding an appropriate course of action are missing. Thus, we sought to determine the incidence of an OI in patients receiving ABG, evaluate whether it influences the outcome of ABG and whether associated risk factors have a further negative influence. METHODS: This study was designed as a large size single-center case-control study investigating patients treated between 01/01/2010 and 31/12/2016 with a minimum follow-up of 12 months. Patients ≥18 years presenting with a recalcitrant non-union of the lower limb receiving surgical bone reconstruction, including bone grafting, were included. A total of 625 patients were recruited, and 509 patients included in the current study. All patients received surgical non-union therapy based on the "diamond concept" including bone reconstruction using ABG. Additionally, multiple tissue samples were harvested and microbiologically analyzed. Tissue samples were microbiologically evaluated regarding an OI. Bone healing was analyzed using clinical and radiological parameters, patient characteristics and comorbidities investigated and ultimately results correlated. RESULTS: Forty-six out of 509 cases with OI resulted in an incidence of 9.04%. Overall consolidation time was increased by 15.08 weeks and radiological outcome slightly impaired (79.38% vs 71.42%), differences were at a non-significant extent. Diabetes mellitus had a significant negative influence on consolidation time (p=0.0313), while age (p=0.0339), smoking status (p=0.0337), diabetes mellitus (p=0.0400) and increased BMI (p=0.0315) showed a significant negative influence on the outcome of bone grafting. CONCLUSION: Surgeons treating recalcitrant non-unions should be aware that an OI is common. If an OI is diagnosed subsequent to ABG the majority of patients does not need immediate revision surgery. However, special attention needs to be paid to high-risk patients.

9.
Nutrients ; 13(2)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672988

ABSTRACT

The trace element selenium (Se) is taken up from the diet and is metabolized mainly by hepatocytes. Selenoprotein P (SELENOP) constitutes the liver-derived Se transporter. Biosynthesis of extracellular glutathione peroxidase (GPx3) in kidney depends on SELENOP-mediated Se supply. We hypothesized that peri-operative Se status may serve as a useful prognostic marker for the outcome in patients undergoing liver transplantation due to hepatocellular carcinoma. Serum samples from liver cancer patients were routinely collected before and after transplantation. Concentrations of serum SELENOP and total Se as well as GPx3 activity were determined by standardized tests and related to survival, etiology of cirrhosis/carcinoma, preoperative neutrophiles, lymphocytes, thyrotropin (TSH) and Child-Pugh and Model for End-Stage Liver Disease (MELD) scores. A total of 221 serum samples from 79 transplanted patients were available for analysis. The Se and SELENOP concentrations were on average below the reference ranges of healthy subjects. Patients with ethanol toxicity-dependent etiology showed particularly low SELENOP and Se concentrations and GPx3 activity. Longitudinal analysis indicated declining Se concentrations in non-survivors. We conclude that severe liver disease necessitating organ replacement is characterized by a pronounced Se deficit before, during and after transplantation. A recovering Se status after surgery is associated with positive prognosis, and an adjuvant Se supplementation may, thus, support convalescence.


Subject(s)
Carcinoma, Hepatocellular/blood , Liver Neoplasms/blood , Liver Transplantation/mortality , Selenium/blood , Trace Elements/blood , Adult , Aged , Biomarkers/blood , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/surgery , Female , Glutathione Peroxidase/blood , Humans , Liver Neoplasms/mortality , Liver Neoplasms/surgery , Longitudinal Studies , Male , Middle Aged , Nutritional Status , Postoperative Period , Preoperative Period , Prognosis , Selenoprotein P/blood , Severity of Illness Index , Survival Analysis , Treatment Outcome
10.
J Spinal Cord Med ; 44(2): 229-240, 2021 03.
Article in English | MEDLINE | ID: mdl-31211658

ABSTRACT

Context/objective: Examining hemoglobin (Hb) dynamics with regard to the potential of neurological remission in patients with traumatic spinal cord injury (TSCI).Design: Prospective Clinical Observational Study.Setting: BG Trauma Centre Ludwigshafen, Department of Paraplegiology, Rhineland-Palatinate, Germany.Methods: From 2011 to 2017 a total of 80 patients with acute spinal injury were enrolled and divided into three groups: initial neurological impairment either with (G1; n = 33) or without subsequent neurological remission (G0; n = 35) and vertebral fractures without initial neurological impairment as control group (C; n = 12). Blood samples were taken for 3 months at 11 time-points after injury. Analyses were performed using routine diagnostics.Outcome measures: Multiple logistic regression was used to determine the prognostic value of Hb regarding neurological remission respecting clinical covariates.Results: Data showed elevated mean Hb concentrations in G1 from the third day to 1 month compared to G0, Hb levels were significantly higher in G1 after 3 days (P = 0.03, G1 > G0). The final multiple logistic regression model based on this data predicting the presence of neurological remission resulted in an AUC (area under the curve) of 80.5% (CI: 67.8%-93.2%) in the ROC (receiver operating characteristic) analysis.Conclusion: Elevated Hb concentrations are associated with a higher likelihood of neurological remission. Elevated concentrations of Hb in G1 compared to G0 over time might be linked to both a better initial oxygen supply response and a decreased ECM (extracellular matrix) degradation highlighting the role of Hb as a valuable biomarker for neural regeneration after TSCI.


Subject(s)
Spinal Cord Injuries , Biomarkers , Humans , Prognosis , Prospective Studies , Spinal Cord Injuries/diagnosis
11.
Redox Biol ; 38: 101764, 2021 01.
Article in English | MEDLINE | ID: mdl-33126054

ABSTRACT

SARS-CoV-2 infections cause the current coronavirus disease (COVID-19) pandemic and challenge the immune system with ongoing inflammation. Several redox-relevant micronutrients are known to contribute to an adequate immune response, including the essential trace elements zinc (Zn) and selenium (Se). In this study, we tested the hypothesis that COVID-19 patients are characterised by Zn deficiency and that Zn status provides prognostic information. Serum Zn was determined in serum samples (n = 171) collected consecutively from patients surviving COVID-19 (n = 29) or non-survivors (n = 6). Data from the European Prospective Investigation into Cancer and Nutrition (EPIC) study were used for comparison. Zn concentrations in patient samples were low as compared to healthy subjects (mean ± SD; 717.4 ± 246.2 vs 975.7 ± 294.0 µg/L, P < 0.0001). The majority of serum samples collected at different time points from the non-survivors (25/34, i.e., 73.5%) and almost half of the samples collected from the survivors (56/137, i.e., 40.9%) were below the threshold for Zn deficiency, i.e., below 638.7 µg/L (the 2.5th percentile in the EPIC cohort). In view that the Se status biomarker and Se transporter selenoprotein P (SELENOP) is also particularly low in COVID-19, we tested the prevalence of a combined deficit, i.e., serum Zn below 638.7 µg/L and serum SELENOP below 2.56 mg/L. This combined deficit was observed in 0.15% of samples in the EPIC cohort of healthy subjects, in 19.7% of the samples collected from the surviving COVID-19 patients and in 50.0% of samples from the non-survivors. Accordingly, the composite biomarker (SELENOP and Zn with age) proved as a reliable indicator of survival in COVID-19 by receiver operating characteristic (ROC) curve analysis, yielding an area under the curve (AUC) of 94.42%. We conclude that Zn and SELENOP status within the reference ranges indicate high survival odds in COVID-19, and assume that correcting a diagnostically proven deficit in Se and/or Zn by a personalised supplementation may support convalescence.


Subject(s)
COVID-19/blood , COVID-19/mortality , P-Selectin/blood , SARS-CoV-2/metabolism , Zinc/blood , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/diagnosis , Cross-Sectional Studies , Disease-Free Survival , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Survival Rate
12.
Nutrients ; 12(7)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708526

ABSTRACT

SARS-CoV-2 infections underlie the current coronavirus disease (COVID-19) pandemic and are causative for a high death toll particularly among elderly subjects and those with comorbidities. Selenium (Se) is an essential trace element of high importance for human health and particularly for a well-balanced immune response. The mortality risk from a severe disease like sepsis or polytrauma is inversely related to Se status. We hypothesized that this relation also applies to COVID-19. Serum samples (n = 166) from COVID-19 patients (n = 33) were collected consecutively and analyzed for total Se by X-ray fluorescence and selenoprotein P (SELENOP) by a validated ELISA. Both biomarkers showed the expected strong correlation (r = 0.7758, p < 0.001), pointing to an insufficient Se availability for optimal selenoprotein expression. In comparison with reference data from a European cross-sectional analysis (EPIC, n = 1915), the patients showed a pronounced deficit in total serum Se (mean ± SD, 50.8 ± 15.7 vs. 84.4 ± 23.4 µg/L) and SELENOP (3.0 ± 1.4 vs. 4.3 ± 1.0 mg/L) concentrations. A Se status below the 2.5th percentile of the reference population, i.e., [Se] < 45.7 µg/L and [SELENOP] < 2.56 mg/L, was present in 43.4% and 39.2% of COVID samples, respectively. The Se status was significantly higher in samples from surviving COVID patients as compared with non-survivors (Se; 53.3 ± 16.2 vs. 40.8 ± 8.1 µg/L, SELENOP; 3.3 ± 1.3 vs. 2.1 ± 0.9 mg/L), recovering with time in survivors while remaining low or even declining in non-survivors. We conclude that Se status analysis in COVID patients provides diagnostic information. However, causality remains unknown due to the observational nature of this study. Nevertheless, the findings strengthen the notion of a relevant role of Se for COVID convalescence and support the discussion on adjuvant Se supplementation in severely diseased and Se-deficient patients.


Subject(s)
Betacoronavirus , Coronavirus Infections/mortality , Pneumonia, Viral/mortality , Selenium/deficiency , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19 , Coronavirus Infections/epidemiology , Cross-Sectional Studies , Female , Germany/epidemiology , Glutathione Peroxidase/blood , Humans , Male , Middle Aged , Nutritional Status , Pandemics , Pneumonia, Viral/epidemiology , Prognosis , SARS-CoV-2 , Selenium/blood , Selenoprotein P/blood
13.
Antioxidants (Basel) ; 9(5)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414139

ABSTRACT

Traumatic Spinal Cord Injury (TSCI) is debilitating and often results in a loss of motor and sensory function caused by an interwoven set of pathological processes. Oxidative stress and inflammatory processes are amongst the critical factors in the secondary injury phase after TSCI. The essential trace element Zinc (Zn) plays a crucial role during this phase as part of the antioxidant defense system. The study aims to determine dynamic patterns in serum Zn concentration in patients with TSCI and test for a correlation with neurological impairment. A total of 42 patients with TSCI were enrolled in this clinical observational study. Serum samples were collected at five different points in time after injury (at admission, and after 4 h, 9 h, 12 h, 24 h, and 3 d). The analysis of the serum Zn concentrations was conducted by total reflection X-ray fluorescence (TXRF). The patients were divided into two groups-a study group S (n = 33) with neurological impairment, including patients with remission (G1, n = 18) and no remission (G0, n = 15) according to a positive AIS (American Spinal Injury Association (ASIA) Impairment Scale) conversion within 3 months after the trauma; and a control group C (n = 9), consisting of subjects with vertebral fractures without neurological impairment. The patient data and serum concentrations were examined and compared by non-parametric test methods to the neurological outcome. The median Zn concentrations in group S dropped within the first 9 h after injury (964 µg/L at admission versus 570 µg/L at 9 h, p < 0.001). This decline was stronger than in control subjects (median of 751 µg/L versus 729 µg/L, p = 0.023). A binary logistic regression analysis including the difference in serum Zn concentration from admission to 9 h after injury yielded an area under the curve (AUC) of 82.2% (CI: 64.0-100.0%) with respect to persistent neurological impairment. Early Zn concentration dynamics differed in relation to the outcome and may constitute a helpful diagnostic indicator for patients with spinal cord trauma. The fast changes in serum Zn concentrations allow an assessment of neurological impairment risk on the first day after trauma. This finding supports strategies for improving patient care by avoiding strong deficits via adjuvant nutritive measures, e.g., in unresponsive patients after trauma.

14.
J Trace Elem Med Biol ; 57: 126415, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31685353

ABSTRACT

INTRODUCTION: Traumatic Spinal Cord Injury (TSCI) is a severe incident resulting in loss of motor and sensory function caused by complex pathological mechanisms including massive oxidative stress and extensive inflammatory processes. The essential trace elements selenium (Se) and copper (Cu) play crucial roles as part of the antioxidant defense. HYPOTHESIS: Remission after TSCI is associated with characteristic dynamics of early changes in serum Cu and Se status. STUDY DESIGN: Single-center prospective observational study. PATIENTS AND METHODS: Serum samples from TSCI patients were analyzed (n = 52); 21 recovered and showed a positive abbreviated injury score (AIS) conversion within 3 months (G1), whereas 21 had no remission (G0). Ten subjects with vertebral fractures without neurological impairment served as control (C). Different time points (at admission, and after 4, 9, 12, and 24 h) were analyzed for total serum Se and Cu concentrations by total reflection X-ray fluorescence, and for Selenoprotein P (SELENOP) and Ceruloplasmin (CP) by sandwich ELISA. RESULTS: At admission, CP and SELENOP concentrations were higher in the remission group (G1) than in the non-remission group (G0). Within 24 h, there were marginal changes in Se, SELENOP, Cu and CP concentrations in the groups of controls (C) and G0. In contrast, these parameters decreased significantly in G1. Binary logistic regression analysis including Cu and Se levels at admission in combination with Se and CP levels after 24 h allowed a prediction for potential remission, with an area under the curve (AUC) of 87.7% (CI: 75.1%-100.0%). CONCLUSION: These data indicate a strong association between temporal changes of the Se and Cu status and the clinical outcome after TSCI. The dynamics observed may reflect an ongoing redistribution of the trace elements in favor of a better anti-inflammatory response and a more successful neurological regeneration.


Subject(s)
Copper/blood , Selenium/blood , Spinal Cord Injuries/blood , Adolescent , Adult , Aged , Antioxidants/metabolism , Ceruloplasmin/metabolism , Female , Humans , Male , Middle Aged , Oxidative Stress/physiology , Prospective Studies , Selenoprotein P/blood , Trace Elements/blood , Young Adult
15.
Antioxidants (Basel) ; 8(11)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31653023

ABSTRACT

In the secondary injury phase after traumatic spinal cord injury (TSCI), oxidative stress and neuroinflammatory responses at the site of injury constitute crucial factors controlling damage extent and may serve as potential therapeutic targets. We determined Magnesium (Mg) serum concentration dynamics in context with the potential of neurological remission in patients with TSCI as Mg is suspected to limit the production of reactive oxygen species and reduce lipid peroxidation. A total of 29 patients with acute TSCI were enrolled, and blood samples were drawn over 3 months at 11 time-points and Mg quantification was performed. Patients were divided into those with (G1, n = 18) or without neurological remission (G0, n = 11). Results show a slight drop in Mg level during the first 4 h after injury, then remained almost unchanged in G1, but increased continuously during the first 7 days after injury in G0. At day 7 Mg concentrations in G1 and G0 were significantly different (p = 0.039, G0 > G1). Significant differences were detected between patients in G1 that presented an AIS (ASIA Impairment Scale) conversion of 1 level versus those with more than 1 level (p = 0.014, G1 AIS imp. = +1 > G1 AI imp. > +1). Low and decreasing levels of Mg within the first 7 days are indicative of a high probability of neurological remission, whereas increasing levels are associated with poor neurological outcome.

16.
J Trace Elem Med Biol ; 51: 141-149, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30466924

ABSTRACT

INTRODUCTION: The trace element selenium (Se) is crucial for the biosynthesis of selenoproteins. Both neurodevelopment and the survival of neurons that are subject to stress depend on a regular selenoprotein biosynthesis and sufficient Se supply by selenoprotein P (SELENOP). HYPOTHESIS: Neuro-regeneration after traumatic spinal cord injury (TSCI) is related to the Se status. STUDY DESIGN: Single-centre prospective observational study. PATIENTS AND METHODS: Three groups of patients with comparable injuries were studied; vertebral fractures without neurological impairment (n = 10, group C), patients with TSCI showing no remission (n = 9, group G0), and patients with remission developing positive abbreviated injury score (AIS) conversion within 3 months (n = 10, group G1). Serum samples were available from different time points (upon admission, and after 4, 9 and 12 h, 1 and 3 days, 1 and 2 weeks, and 1, 2 and 3 months). Serum trace element concentrations were determined by total reflection X-ray fluorescence, SELENOP by ELISA, and further parameters by laboratory routine. RESULTS: Serum Se and SELENOP concentrations were higher on admission in the remission group (G1) as compared to G0. During the first week, both parameters remained constant in C and G0, whereas they declined significantly in the remission group. Similarly, the concentration changes between admission and 24 h were most pronounced in this group of recovering patients (G1). Binary logistic regression analysis including the delta of Se and SELENOP within the first 24 h indicated an AUC of 90.0% (CI: 67.4%-100.0%) with regards to predicting the outcome after TSCI. CONCLUSION: A Se deficit might constitute a risk factor for poor outcome after TSCI. A dynamic decline of serum Se and SELENOP concentrations after admission may reflect ongoing repair processes that are associated with higher odds for a positive clinical outcome.


Subject(s)
Selenium/blood , Selenoproteins/blood , Spinal Cord Injuries/blood , Spinal Cord Regeneration , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Spinal Cord Injuries/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...