Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Environ Qual ; 33(3): 1033-40, 2004.
Article in English | MEDLINE | ID: mdl-15224941

ABSTRACT

Solute concentration and soluble dye studies inferring that preferential flow accelerates field-scale contaminant transport are common but flux measurements quantifying its impact are essentially nonexistent. A tile-drain facility was used to determine the influence of matrix and preferential flow processes on the flux of mobile tracers subjected to different irrigation regimes (4.4 and 0.89 mm h(-1)) in a silt loam soil. After tile outflow reached steady state either bromide (Br; 280 kg ha(-1)) or pentafluorobenzoic acid (PFBA; 121 kg ha(-1)) was applied through the irrigation system inside a shed (3.5 x 24 m). Bromide fluxes were monitored at an irrigation rate of 4.4 mm h(-1) while PFBA fluxes were monitored at an irrigation rate of 0.89 mm h(-1). At 4.4 mm h(-1) nearly one-third of the surface-applied Br was recovered in the tile line after only 124 mm of irrigation and was poorly fit by the one-dimensional convective-dispersive equation (CDE). On the other hand, the one-dimensional CDE fit the main PFBA breakthrough pattern almost perfectly, suggesting the PFBA transport was dominated by matrix flow. Furthermore, after 225 mm of water had been applied, less than 2% of the applied PFBA had been leached through the soil compared with more than 59% of the applied Br. This study demonstrates that the methodology of applying a narrow strip of chemical to a tile drain facility is appropriate for quantifying chemical fluxes at the small-field scale and also suggests that there may be a critical input flux whereby preferential flow is initiated.


Subject(s)
Models, Theoretical , Water Movements , Water Pollutants/analysis , Water Supply , Agriculture , Coloring Agents/analysis
2.
J Environ Sci Health B ; 36(6): 709-27, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11757732

ABSTRACT

Metabolism of [14C-u-phenyl]isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] by two soil and freshwater microorganisms, green alga Chlorella kesslerei and cyanobacterium Anabaena inaequalis, was studied as a function of pH, pesticide concentration, and incubation time. Metabolized isoproturon, in the media, ranged from 0% (Chlorella at pH 5.5 after 1 d) to 22% (Anabaena at pH 5.5 after 10 d). Twenty-five percent faster degradation of isoproturon by Anabaena occurred at pH 5.5 versus pH 7.5, when measured over 10 d. Increased 14C incorporation into tissue, with time and at lower pH, was due mainly to bioaccumulation of [14C]isoproturon and/or its metabolites in the cells. Metabolic degradation resulted in four identifiable (by TLC) metabolites. Based on this, a degradation pathway is proposed, involving mono- and di-N-demethylation, hydroxylation of the isopropyl moiety, and hydrolysis to 4-isopropylaniline. Similarity in the metabolites produced suggests that the enzyme systems responsible for metabolizing isoproturon are almost identical in both photosynthetic micro-algae.


Subject(s)
Anabaena/metabolism , Chlorella/metabolism , Herbicides/metabolism , Methylurea Compounds/metabolism , Phenylurea Compounds , Biodegradation, Environmental , Carbon Isotopes , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Hydrogen-Ion Concentration , Soil Microbiology , Soil Pollutants/metabolism , Water Microbiology , Water Pollutants, Chemical/metabolism
3.
J Environ Sci Health B ; 34(1): 75-95, 1999 Jan.
Article in English | MEDLINE | ID: mdl-10048206

ABSTRACT

Degradation of chlorpyrifos was evaluated in laboratory studies. Surface (0-15 cm) and subsurface (40-60 cm) clay loam soils from a pesticide-untreated field were incubated in biometer flasks for 97 days at 25 degrees C. The treatment was 2 micrograms g-1 [2,6-pyridinyl-14C] chlorpyrifos, with 74 kBq radioactivity per 100 g soil flask. Evolved 14CO2 was monitored in KOH traps throughout the experiment. Periodically, soil subsamples were also methanol-extracted [ambient shaking, then supercritical fluid extraction (SFE)], then analyzed by thin-layer chromatography. Total 14C and unextractable soil-bound 14C residues were determined by combustion. From the surface and subsurface soils, 41 and 43% of the applied radiocarbon was evolved as 14CO2 during 3 months incubation. The time required for 50% loss of the parent insecticide in surface and subsurface soils was about 10 days. By 97 days, chlorpyrifos residues and their relative concentration (in surface/subsurface) as % of applied 14C were: 14CO2 (40.6/42.6), chlorpyrifos (13.1/12.4), soil-bound residues (11.7/11.4), and 3,5,6-trichloropyridinol (TCP) (3.8/4.8). Chlorpyrifos was largely extracted by simple shaking with methanol, whereas TCP was mainly removed only by SFE. The short persistence of chlorpyrifos probably relates to the high soil pH (7.9-8.1).


Subject(s)
Chlorpyrifos/metabolism , Insecticides/metabolism , Soil Pollutants/metabolism , Agriculture , Hydrogen-Ion Concentration , Methanol , Models, Chemical , Solvents , Turkey
4.
Biosens Bioelectron ; 12(2): 113-24, 1997.
Article in English | MEDLINE | ID: mdl-9011023

ABSTRACT

A fiber optic evanescent fluoroimmunosensor was used to rapidly detect and quantitate coca alkaloids as cocaine equivalents in leaf extracts of five Erythroxylum species. A monoclonal antibody (mAb) made against benzoylecgonine (BE), a major metabolite of cocaine, was immobilized covalently on quartz fibers and used as the biological sensing element in the portable fluorometer. Benzoylecgonine-fluorescein (BE-FL) was used as the optical signal generator when it bound to the fiber. If present, cocaine competed for the mAb and interfered with the binding of BE-FL, thereby reducing the fluorescence transmitted by the fiber. Calibration curves were prepared by measuring (over 30 s) the rates of fluorescence increase in the absence, or presence of cocaine. Ethanol or acid extracts of dry coca leaves were assayed by this fiber optic biosensor, gas chromatography and a fluorescent polarization immune assay. Biosensor values of cocaine content of leaves from five Erythroxylum species were not significantly different from gas chromatography values, but had higher variance. The biosensor assay was rapid and did not require cleanup of the crude leaf extracts. Cocaine in acid extracts was reduced significantly after 4 weeks at 23 degrees C and after 3 weeks at 37 degrees C. Fibers (mAb-coated), stored at 37 degrees C in phosphate-buffered solution (0.02% NaN3), gave stable responses for 14 days.


Subject(s)
Biosensing Techniques , Coca/chemistry , Cocaine/analysis , Plants, Medicinal , Calibration , Fiber Optic Technology , Immunoassay , Optical Fibers , Plant Extracts/analysis
10.
Science ; 162(3853): 562-3, 1968 Nov 01.
Article in English | MEDLINE | ID: mdl-5706936

ABSTRACT

Pesticide movement was evaluated by the comparison of R(F) values on thin layers of soils. Results from the new technique correlated well with existing information on pesticide movement, facilitating the grouping of pesticides into classes on the basis of mobility. Thin-layer chromatography may have broad applicability in soils research.


Subject(s)
Chromatography, Thin Layer , Herbicides/analysis , Pesticides/analysis , Soil/analysis , Acetates/analysis , Aniline Compounds/analysis , Autoradiography , Benzoates/analysis , Carbamates/analysis , Cresols/analysis , Methods , Pyridinium Compounds/analysis , Triazines/analysis
12.
Appl Microbiol ; 15(6): 1393-8, 1967 Nov.
Article in English | MEDLINE | ID: mdl-16349751

ABSTRACT

A microorganism capable of degrading 4-chloro-2-methylphenoxyacetic acid (MCPA) was isolated from soil and identified as Flavobacterium peregrinum. All of the chlorine of MCPA was released as chloride, and the carboxyl-carbon was converted to volatile products by growing cultures of the bacterium, but a phenol accumulated in the medium. The phenol was identified as 4-chloro-2-methylphenol on the basis of its gas chromatographic and infrared characteristics. Extracts of cells of F. peregrinum and of a phenoxyacetate-metabolizing Arthrobacter sp. dehalogenated MCPA and several catechols but not 4-chloro-2-methylanisole. The Arthrobacter sp. cell extract was fractionated, and an enzyme preparation was obtained which catalyzed the conversion of MCPA to 4-chloro-2-methylphenol. The latter compound was not metabolized unless reduced nicotinamide adenine dinucleotide phosphate was added to the fractionated extract. The phenol in turn was apparently oxidized to a catechol by components of the enzyme preparation.

SELECTION OF CITATIONS
SEARCH DETAIL
...