Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 14(11): 1071-1074, 2019 11.
Article in English | MEDLINE | ID: mdl-31611657

ABSTRACT

We demonstrate the translation of a low-cost, non-precious metal cobalt phosphide (CoP) catalyst from 1 cm2 lab-scale experiments to a commercial-scale 86 cm2 polymer electrolyte membrane (PEM) electrolyser. A two-step bulk synthesis was adopted to produce CoP on a high-surface-area carbon support that was readily integrated into an industrial PEM electrolyser fabrication process. The performance of the CoP was compared head to head with a platinum-based PEM under the same operating conditions (400 psi, 50 °C). CoP was found to be active and stable, operating at 1.86 A cm-2 for >1,700 h of continuous hydrogen production while providing substantial material cost savings relative to platinum. This work illustrates a potential pathway for non-precious hydrogen evolution catalysts developed in past decades to translate to commercial applications.

2.
ACS Appl Mater Interfaces ; 9(42): 36792-36798, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29035498

ABSTRACT

Developing materials, interfaces, and devices with improved stability remains one of the key challenges in the field of photoelectrochemical water splitting. As a barrier to corrosion, molybdenum disulfide is a particularly attractive protection layer for photocathodes due to its inherent stability in acid, the low permeability of its basal planes, and the excellent hydrogen evolution reaction (HER) activity the MoS2 edge. Here, we demonstrate a stable silicon photocathode containing a protecting layer consisting of molybdenum disulfide, molybdenum silicide, and silicon oxide which operates continuously for two months. We make comparisons between this system and another molybdenum sulfide-silicon photocathode embodiment, taking both systems to catastrophic failure during photoelectrochemical stability measurements and exploring mechanisms of degradation. X-ray photoelectron spectroscopy and transmission electron microscopy provide key insights into the origins of stability.

3.
ChemSusChem ; 8(20): 3512-9, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26377877

ABSTRACT

The development of low-cost hydrogen evolution reaction (HER) catalysts that can be readily integrated into electrolyzers is critical if H2 from renewable electricity-powered electrolysis is to compete cost effectively with steam reforming. Herein, we report three distinct earth-abundant Mo-based catalysts, namely those based on MoSx , [Mo3 S13 ](2-) nanoclusters, and sulfur-doped Mo phosphide (MoP|S), loaded onto carbon supports. The catalysts were synthesized through facile impregnation-sulfidization routes specifically designed for catalyst-device compatibility. Fundamental electrochemical studies demonstrate the excellent HER activity and stability of the Mo-sulfide based catalysts in an acidic environment, and the resulting polymer electrolyte membrane (PEM) electrolyzers that integrate these catalysts exhibit high efficiency and durability. This work is an important step towards the goal of replacing Pt with earth-abundant catalysts for the HER in commercial PEM electrolyzers.


Subject(s)
Disulfides/chemistry , Fluorocarbon Polymers/chemistry , Hydrogen/chemistry , Molybdenum/chemistry , Carbon/chemistry , Catalysis , Electrochemistry , Electrolysis , Electrolytes , Nanostructures/chemistry , Platinum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...