Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
J Mol Cell Cardiol ; 129: 179-187, 2019 04.
Article in English | MEDLINE | ID: mdl-30825483

ABSTRACT

Polyamines are small aliphatic cationic molecules synthesized via a highly regulated pathway and involved in general molecular and cellular phenomena. Both mammalian cells and microorganisms synthesize polyamines, and both sources may contribute to the presence of polyamines in the circulation. The dominant location for microorganisms within the body is the gut. Accordingly, the gut microbiota probably synthesizes most of the polyamines in the circulation in addition to those produced by the mammalian host cells. Polyamines are mandatory for cellular growth and proliferation. Established evidence suggests that the polyamine spermidine prolongs lifespan and improves cardiovascular health in animal models and humans through both local mechanisms, involving improved cardiomyocyte function, and systemic mechanisms, including increased NO bioavailability and reduced systemic inflammation. Higher levels of polyamines have been detected in non-dilated aorta of patients affected by bicuspid aortic valve congenital malformation, an aortopathy associated with an increased risk for thoracic ascending aorta aneurysm. In this review, we discuss metabolism of polyamines and their potential effects on vascular smooth muscle and endothelial cell function in vascular pathology of the thoracic ascending aorta associated with bicuspid or tricuspid aortic valve.


Subject(s)
Bicuspid/metabolism , Bicuspid/microbiology , Gastrointestinal Microbiome , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/microbiology , Heart Valve Diseases/metabolism , Heart Valve Diseases/microbiology , Polyamines/metabolism , Tricuspid Valve/metabolism , Tricuspid Valve/microbiology , Animals , Aortic Valve/metabolism , Aortic Valve/microbiology , Aortic Valve/physiopathology , Bicuspid/physiopathology , Bicuspid Aortic Valve Disease , Disease Progression , Heart Defects, Congenital/blood , Heart Defects, Congenital/physiopathology , Heart Valve Diseases/blood , Heart Valve Diseases/physiopathology , Humans , Polyamines/blood , Polyamines/chemistry , Tricuspid Valve/physiopathology
2.
Arterioscler Thromb Vasc Biol ; 38(2): 414-424, 2018 02.
Article in English | MEDLINE | ID: mdl-29217510

ABSTRACT

OBJECTIVE: Pressure-induced myogenic tone is involved in autoregulation of local blood flow and confers protection against excessive pressure levels in small arteries and capillaries. Myogenic tone is dependent on smooth muscle microRNAs (miRNAs), but the identity of these miRNAs is unclear. Furthermore, the consequences of altered myogenic tone for hypertension-induced damage to small arteries are not well understood. APPROACH AND RESULTS: The importance of smooth muscle-enriched microRNAs, miR-143/145, for myogenic tone was evaluated in miR-143/145 knockout mice. Furthermore, hypertension-induced vascular injury was evaluated in mesenteric arteries in vivo after angiotensin II infusion. Myogenic tone was abolished in miR-143/145 knockout mesenteric arteries, whereas contraction in response to calyculin A and potassium chloride was reduced by ≈30%. Furthermore, myogenic responsiveness was potentiated by angiotensin II in wild-type but not in knockout mice. Angiotensin II administration in vivo elevated systemic blood pressure in both genotypes. Hypertensive knockout mice developed severe vascular lesions characterized by vascular inflammation, adventitial fibrosis, and neointimal hyperplasia in small mesenteric arteries. This was associated with depolymerization of actin filaments and fragmentation of the elastic laminae at the sites of vascular lesions. CONCLUSIONS: This study demonstrates that miR-143/145 expression is essential for myogenic responsiveness. During hypertension, loss of myogenic tone results in potentially damaging levels of mechanical stress and detrimental effects on small arteries. The results presented herein provide novel insights into the pathogenesis of vascular disease and emphasize the importance of controlling mechanical factors to maintain structural integrity of the vascular wall.


Subject(s)
Arterial Pressure , Hypertension/metabolism , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Vascular Remodeling , Vasoconstriction , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/pathology , Angiotensin II , Animals , Calcium Signaling , Cells, Cultured , Disease Models, Animal , Elastic Tissue/metabolism , Elastic Tissue/pathology , Female , Fibrosis , Gene Knockout Techniques , Hyperplasia , Hypertension/genetics , Hypertension/pathology , Hypertension/physiopathology , Male , Mesenteric Arteries/metabolism , Mesenteric Arteries/pathology , Mesenteric Arteries/physiopathology , Mice, Knockout , MicroRNAs/genetics , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Neointima , Vascular Resistance
3.
Heart Vessels ; 33(3): 327-339, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29147966

ABSTRACT

Polyamines are cationic molecules synthesized via a highly regulated pathway, obtained from the diet or produced by the gut microbiota. They are involved in general molecular and cellular phenomena that play a role also in vascular disease. Bicuspid aortic valve (BAV) is a congenital malformation associated to a greater risk of thoracic ascending aorta (TAA) aneurysm, whose pathogenesis is not yet well understood. We focused on differential analysis of key members of polyamine pathway and on polyamine concentration in non-dilated TAA samples from patients with either stenotic tricuspid aortic valve (TAV) or BAV (diameter ≤ 45 mm), vs. normal aortas from organ donors, with the aim of revealing a potential involvement of polyamines in early aortopathy. Changes of gene expression in TAA samples were evaluated by RT-PCR. Changes of ornithine decarboxylase 1 (ODC1), a key enzyme in polyamine formation, and cationic amino acid transporter 1 (SLC7A1/CAT-1) expression were analyzed also by Western blot. ODC1 subcellular localization was assessed by immunohistochemistry. Polyamine concentration in TAA samples was evaluated by HPLC. BAV TAA samples showed an increased concentration of putrescine and spermidine vs. TAV and donor samples, together with a decreased mRNA level of polyamine anabolic enzymes and of the putative polyamine transporter SLC7A1/CAT-1. The catabolic enzyme spermidine/spermine N1-acetyltransferase 1 showed a significant mRNA increase in TAV samples only, together with a decreased concentration of spermine. The decreased expression of SLC7A1/CAT-1 and ODC1 mRNAs in BAV corresponded to increased or unchanged expression of the respective proteins. ODC was located mainly in smooth muscle cell (SMC) nucleus in TAV and donor samples, while it was present also in SMC cytoplasm in BAV samples, suggesting its activation. In conclusion, BAV, but not TAV non-dilated samples show increased polyamine concentration, accompanied by the activation of a regulatory negative feedback mechanism.


Subject(s)
Aorta/metabolism , Aortic Valve/abnormalities , Heart Valve Diseases/metabolism , Polyamines/metabolism , Adult , Aged , Aorta, Thoracic , Aortic Valve/metabolism , Bicuspid Aortic Valve Disease , Biomarkers/metabolism , Disease Progression , Echocardiography, Doppler , Female , Heart Valve Diseases/diagnosis , Humans , Immunohistochemistry , Male , Middle Aged , Severity of Illness Index
5.
Mol Nutr Food Res ; 61(7)2017 07.
Article in English | MEDLINE | ID: mdl-28205325

ABSTRACT

SCOPE: The molecular mechanisms underlying the cholesterol-lowering properties of oats are only partly known. To study possible pathways involved, we investigated gene expressions in the liver and small intestine of mice fed oats. METHOD AND RESULTS: Cholesterol and bile acids were analyzed in plasma and feces from LDL-receptor deficient (LDLr-/- ) mice fed Western diet with wholegrain oats. A transcriptome analysis of mRNA from liver and jejunum was performed together with quantitative RT-PCR. Oat-fed mice had lower levels of plasma lipids and increased levels of bile acids and cholesterol in feces compared with controls. Two hundred thirty nine genes in jejunum and 25 genes in liver were differentially expressed (FDR corrected p < 0.05). The most affected biological process in jejunum was lipid biosynthesis and regulation. The apical sodium-dependent bile acid transporter (ASBT, Slc10a) and the intracellular bile acid binding protein (Fabp6) were both upregulated, whereas small heterodimer partner-1 (Shp-1) and apolipoprotein CII (Apoc2) were downregulated. CONCLUSIONS: Whole oats attenuated responses typically induced by high-fat diet. Increased expression of genes for intestinal bile acid uptake following oat consumption suggests retention in the gut lumen rather than decreased uptake capacity as cause for the increased bile acid excretion and the concomitant reduction of plasma cholesterol.


Subject(s)
Avena , Bile Acids and Salts/genetics , Jejunum/physiology , Liver/physiology , Whole Grains , Animals , Bile Acids and Salts/metabolism , Cholesterol/metabolism , Diet, Western , Fatty Acid-Binding Proteins/genetics , Feces , Female , Gene Expression Profiling , Intestinal Mucosa/metabolism , Lipids/blood , Mice, Mutant Strains , Organic Anion Transporters, Sodium-Dependent/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Real-Time Polymerase Chain Reaction , Receptors, LDL/genetics , Symporters/genetics
6.
EMBO J ; 36(2): 183-201, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27940654

ABSTRACT

Shear detection and mechanotransduction by arterial endothelium requires junctional complexes containing PECAM-1 and VE-cadherin, as well as firm anchorage to the underlying basement membrane. While considerable information is available for junctional complexes in these processes, gained largely from in vitro studies, little is known about the contribution of the endothelial basement membrane. Using resistance artery explants, we show that the integral endothelial basement membrane component, laminin 511 (laminin α5), is central to shear detection and mechanotransduction and its elimination at this site results in ablation of dilation in response to increased shear stress. Loss of endothelial laminin 511 correlates with reduced cortical stiffness of arterial endothelium in vivo, smaller integrin ß1-positive/vinculin-positive focal adhesions, and reduced junctional association of actin-myosin II In vitro assays reveal that ß1 integrin-mediated interaction with laminin 511 results in high strengths of adhesion, which promotes p120 catenin association with VE-cadherin, stabilizing it at cell junctions and increasing cell-cell adhesion strength. This highlights the importance of endothelial laminin 511 in shear response in the physiologically relevant context of resistance arteries.


Subject(s)
Basement Membrane/physiology , Endothelium, Vascular/physiology , Laminin/metabolism , Stress, Mechanical , Stress, Physiological , Animals , Cells, Cultured , Humans , Mice , Mice, Knockout
7.
J Cell Physiol ; 232(11): 3088-3102, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28019664

ABSTRACT

Modulation from contractile to synthetic phenotype of vascular smooth muscle cells is a central process in disorders involving compromised integrity of the vascular wall. Phenotype modulation has been shown to include transition from voltage-dependent toward voltage-independent regulation of the intracellular calcium level, and inhibition of non-voltage dependent calcium influx contributes to maintenance of the contractile phenotype. One possible mediator of calcium-dependent signaling is the FAK-family non-receptor protein kinase Pyk2, which is activated by a number of stimuli in a calcium-dependent manner. We used the Pyk2 inhibitor PF-4594755 and Pyk2 siRNA to investigate the role of Pyk2 in phenotype modulation in rat carotid artery smooth muscle cells and in cultured intact arteries. Pyk2 inhibition promoted the expression of smooth muscle markers at the mRNA and protein levels under stimulation by FBS or PDGF-BB and counteracted phenotype shift in cultured intact carotid arteries and balloon injury ex vivo. During long-term (24-96 hr) treatment with PF-4594755, smooth muscle markers increased before cell proliferation was inhibited, correlating with decreased KLF4 expression and differing from effects of MEK inhibition. The Pyk2 inhibitor reduced Orai1 and preserved SERCA2a expression in carotid artery segments in organ culture, and eliminated the inhibitory effect of PDGF stimulation on L-type calcium channel and large-conductance calcium-activated potassium channel expression in carotid cells. Basal intracellular calcium level, calcium wave activity, and store-operated calcium influx were reduced after Pyk2 inhibition of growth-stimulated cells. Pyk2 inhibition may provide an interesting approach for preserving vascular smooth muscle differentiation under pathophysiological conditions.


Subject(s)
Carotid Artery Injuries/enzymology , Cell Differentiation/drug effects , Focal Adhesion Kinase 2/antagonists & inhibitors , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Protein Kinase Inhibitors/pharmacology , Vasoconstriction/drug effects , Animals , Becaplermin , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Calcium Signaling/drug effects , Carotid Artery Injuries/genetics , Carotid Artery Injuries/physiopathology , Carotid Artery, Common/drug effects , Carotid Artery, Common/enzymology , Carotid Artery, Common/physiopathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Focal Adhesion Kinase 2/genetics , Focal Adhesion Kinase 2/metabolism , Gene Expression Regulation , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/metabolism , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/enzymology , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Organ Culture Techniques , Phenotype , Proto-Oncogene Proteins c-sis/pharmacology , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Time Factors , Transfection
8.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 1088-1098, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27939432

ABSTRACT

The dynamic properties of the actin cytoskeleton in smooth muscle cells play an important role in a number of cardiovascular disease states. The state of actin does not only mediate mechanical stability and contractile function but can also regulate gene expression via myocardin related transcription factors (MRTFs). These transcriptional co-activators regulate genes encoding contractile and cytoskeletal proteins in smooth muscle. Regulation of small non-coding microRNAs (miRNAs) by actin polymerization may mediate some of these effects. MiRNAs are short non-coding RNAs that modulate gene expression by post-transcriptional regulation of target messenger RNA. In this study we aimed to determine a profile of miRNAs that were 1) regulated by actin/MRTF-A, 2) associated with the contractile smooth muscle phenotype and 3) enriched in muscle cells. This analysis was performed using cardiovascular disease-focused miRNA arrays in both mouse and human cells. The potential clinical importance of actin polymerization in aortic aneurysm was evaluated using biopsies from mildly dilated human thoracic aorta in patients with stenotic tricuspid or bicuspid aortic valve. By integrating information from multiple qPCR based miRNA arrays we identified a group of five miRNAs (miR-1, miR-22, miR-143, miR-145 and miR-378a) that were sensitive to actin polymerization and MRTF-A overexpression in both mouse and human vascular smooth muscle. With the exception of miR-22, these miRNAs were also relatively enriched in striated and/or smooth muscle containing tissues. Actin polymerization was found to be dramatically reduced in the aorta from patients with mild aortic dilations. This was associated with a decrease in actin/MRTF-regulated miRNAs. In conclusion, the transcriptional co-activator MRTF-A and actin polymerization regulated a subset of miRNAs in vascular smooth muscle. Identification of novel miRNAs regulated by actin/MRTF-A may provide further insight into the mechanisms underlying vascular disease states, such as aortic aneurysm, as well as novel ideas regarding therapeutic strategies. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Subject(s)
Actins/metabolism , MicroRNAs/genetics , Muscle, Smooth, Vascular/metabolism , Trans-Activators/genetics , Animals , Cells, Cultured , Gene Expression Profiling , Humans , Mice , Polymerization
9.
J Cell Physiol ; 231(6): 1334-42, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26529275

ABSTRACT

Increased vascular smooth muscle cell (VSMC) proliferation is a factor in atherosclerosis and injury-induced arterial (re) stenosis. Inhibition of polyamine synthesis by α-difluoro-methylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, attenuates VSMC proliferation with high sensitivity and specificity. However, cells can escape polyamine synthesis blockade by importing polyamines from the environment. To address this issue, polyamine transport inhibitors (PTIs) have been developed. We investigated the effects of the novel trimer44NMe (PTI-1) alone and in combination with DFMO on VSMC polyamine uptake, proliferation and phenotype regulation. PTI-1 efficiently inhibited polyamine uptake in primary mouse aortic and human coronary VSMCs in the absence as well as in the presence of DFMO. Interestingly, culture with DFMO for 2 days substantially (>95%) reduced putrescine (Put) and spermidine (Spd) contents without any effect on proliferation. Culture with PTI-1 alone had no effect on either polyamine levels or proliferation rate, but the combination of both treatments reduced Put and Spd levels below the detection limit and inhibited proliferation. Treatment with DFMO for a longer time period (4 days) reduced Put and Spd below their detection limits and reduced proliferation, showing that only a small pool of polyamines is needed to sustain VSMC proliferation. Inhibited proliferation by polyamine depletion was associated with maintained expression of contractile smooth marker genes. In cultured intact mouse aorta, PTI-1 potentiated the DFMO-induced inhibition of cell proliferation. The combination of endogenous polyamine synthesis inhibition with uptake blockade is thus a viable approach for targeting unwanted vascular cell proliferation in vivo, including vascular restenosis.


Subject(s)
Biogenic Polyamines/biosynthesis , Cell Proliferation/drug effects , Eflornithine/pharmacology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Ornithine Decarboxylase Inhibitors/pharmacology , Polyamines/pharmacology , Vasoconstriction/drug effects , Animals , Biological Transport , Caveolin 1/deficiency , Caveolin 1/genetics , Cells, Cultured , Dose-Response Relationship, Drug , Drug Synergism , Gene Expression Regulation , Humans , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phenotype , Putrescine/metabolism , Spermidine/metabolism , Time Factors , Tissue Culture Techniques
10.
Arterioscler Thromb Vasc Biol ; 35(6): 1489-97, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25857312

ABSTRACT

OBJECTIVE: Actin dynamics in vascular smooth muscle is known to regulate contractile differentiation and may play a role in the pathogenesis of vascular disease. However, the list of genes regulated by actin polymerization in smooth muscle remains incomprehensive. Thus, the objective of this study was to identify actin-regulated genes in smooth muscle and to demonstrate the role of these genes in the regulation of vascular smooth muscle phenotype. APPROACH AND RESULTS: Mouse aortic smooth muscle cells were treated with an actin-stabilizing agent, jasplakinolide, and analyzed by microarrays. Several transcripts were upregulated including both known and previously unknown actin-regulated genes. Dystrophin and synaptopodin 2 were selected for further analysis in models of phenotypic modulation and vascular disease. These genes were highly expressed in differentiated versus synthetic smooth muscle and their expression was promoted by the transcription factors myocardin and myocardin-related transcription factor A. Furthermore, the expression of both synaptopodin 2 and dystrophin was significantly reduced in balloon-injured human arteries. Finally, using a dystrophin mutant mdx mouse and synaptopodin 2 knockdown, we demonstrate that these genes are involved in the regulation of smooth muscle differentiation and function. CONCLUSIONS: This study demonstrates novel genes that are promoted by actin polymerization, that regulate smooth muscle function, and that are deregulated in models of vascular disease. Thus, targeting actin polymerization or the genes controlled in this manner can lead to novel therapeutic options against vascular pathologies that involve phenotypic modulation of smooth muscle cells.


Subject(s)
Actins/metabolism , Dystrophin/genetics , Microfilament Proteins/genetics , Muscle, Smooth, Vascular/metabolism , Vascular Diseases/genetics , Vascular Diseases/metabolism , Animals , Arteries/injuries , Cells, Cultured , Gene Expression , Humans , Mice, Inbred mdx , Mice, Knockout , Muscle Contraction , Muscle Relaxation , Polymerization , Transcription, Genetic
11.
Biosci Rep ; 34(6): e00153, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25301005

ABSTRACT

Much evidence highlights the importance of polyamines for VSMC (vascular smooth muscle cell) proliferation and migration. Cav-1 (caveolin-1) was recently reported to regulate polyamine uptake in intestinal epithelial cells. The aim of the present study was to assess the importance of Cav-1 for VSMC polyamine uptake and its impact on cell proliferation and migration. Cav-1 KO (knockout) mouse aortic cells showed increased polyamine uptake and elevated proliferation and migration compared with WT (wild-type) cells. Both Cav-1 KO and WT cells expressed the smooth muscle differentiation markers SM22 and calponin. Cell-cycle phase distribution analysis revealed a higher proportion of Cav-1 KO than WT cells in the S phase. Cav-1 KO cells were hyper-proliferative in the presence but not in the absence of extracellular polyamines, and, moreover, supplementation with exogenous polyamines promoted proliferation in Cav-1 KO but not in WT cells. Expression of the solute carrier transporters Slc7a1 and Slc43a1 was higher in Cav-1 KO than in WT cells. ODC (ornithine decarboxylase) protein and mRNA expression as well as ODC activity were similar in Cav-1 KO and WT cells showing unaltered synthesis of polyamines in Cav-1 KO cells. Cav-1 was reduced in migrating cells in vitro and in carotid lesions in vivo. Our data show that Cav-1 negatively regulates VSMC polyamine uptake and that the proliferative advantage of Cav-1 KO cells is critically dependent on polyamine uptake. We provide proof-of-principle for targeting Cav-1-regulated polyamine uptake as a strategy to fight unwanted VSMC proliferation as observed in restenosis.


Subject(s)
Caveolin 1/metabolism , Cell Proliferation , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Polyamines/metabolism , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Animals , Blotting, Western , Calcium-Binding Proteins/metabolism , Carotid Arteries/metabolism , Carotid Arteries/surgery , Caveolin 1/genetics , Cell Movement , Cells, Cultured , DNA/biosynthesis , Gene Expression , Immunohistochemistry , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/drug effects , Ornithine Decarboxylase/genetics , Ornithine Decarboxylase/metabolism , Polyamines/pharmacokinetics , Polyamines/pharmacology , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Calponins
12.
Physiol Rep ; 2(7)2014 Jul 16.
Article in English | MEDLINE | ID: mdl-25347863

ABSTRACT

Stretch of vascular smooth muscle stimulates growth and proliferation as well as contraction and expression of contractile/cytoskeletal proteins, all of which are also regulated by calcium-dependent signals. We studied the role of the calcium- and integrin-activated proline-rich tyrosine kinase 2 (PYK2) in stretch-induced responses of the rat portal vein loaded by a hanging weight ex vivo. PYK2 phosphorylation at Tyr-402 was increased both by a 10-min stretch and by organ culture with load over several days. Protein and DNA synthesis were reduced by the novel PYK2 inhibitor PF-4594755 (0.5-1 µmol/L), while still sensitive to stretch. In 3-day organ culture, PF-4594755 caused maintained myogenic spontaneous activity but did not affect contraction in response to high-K(+) (60 mmol/L) or to α1-adrenergic stimulation by cirazoline. Basal and stretch-induced PYK2 phosphorylation in culture were inhibited by PF-4594755, closely mimicking inhibition of non-voltage-dependent calcium influx by 2-APB (30 µmol/L). In contrast, the L-type calcium channel blocker, nifedipine (1 µmol/L) eliminated stretch-induced but not basal PYK2 phosphorylation. Stretch-induced Akt and ERK1/2 phosphorylation was eliminated by PF-4594755. PYK2 inhibition had no effect on mRNA expression of several smooth muscle markers, and stretch-sensitive SM22α synthesis was preserved. Culture of portal vein with the Ang II inhibitor losartan (1 µmol/L) eliminated stretch sensitivity of PYK2 and Akt phosphorylation, but did not affect mRNA expression of smooth muscle markers. The results suggest that PYK2 signaling functionally distinguishes effects of voltage- and non-voltage-dependent calcium influx. A small-molecule inhibitor of PYK2 reduces growth and DNA synthesis but does not affect contractile differentiation of vascular smooth muscle.

13.
Basic Clin Pharmacol Toxicol ; 115(5): 379-88, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24666424

ABSTRACT

The polyamines putrescine, spermidine and spermine play essential roles in cell proliferation and migration, two processes involved in the development of vascular disease. Thus, intervention with polyamine formation may represent a way to inhibit unwanted vascular smooth muscle cell (VSMC) proliferation. The aim of the present study was to assess the importance of polyamines for VSMC proliferation and vascular contractility. The rate-limiting step in polyamine biosynthesis is catalysed by ornithine decarboxylase (ODC). Treatment with α-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, reduced DNA synthesis in primary rat VSMCs in a concentration-dependent manner with an IC50 value of 100 µM. Moreover, DFMO reduced VSMC migration assessed in a scratch assay. The DFMO-induced attenuation of VSMC proliferation was associated with lowered cellular amount of polyamines. The antiproliferative effect of DFMO was specific because supplementation with polyamines reversed the effect of DFMO on proliferation and normalized cellular polyamine levels. Isometric force recordings in cultured rat tail artery rings showed that DFMO counteracts the decrease in contractility caused by culture with foetal bovine serum as growth stimulant. We conclude that inhibition of polyamine synthesis by DFMO may limit the first wave of cell proliferation and migration, which occurs in the acute phase after vascular injury. Besides its antiproliferative effect, DFMO may prevent loss of the smooth muscle contractile phenotype in vascular injury.


Subject(s)
Ornithine Decarboxylase/pharmacology , Putrescine/metabolism , Spermidine/metabolism , Spermine/metabolism , Animals , Cattle , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Eflornithine/administration & dosage , Eflornithine/pharmacology , Inhibitory Concentration 50 , Male , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Phenotype , Rats , Rats, Sprague-Dawley
14.
Cardiovasc Res ; 101(2): 288-96, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24233972

ABSTRACT

AIMS: The myogenic response is the intrinsic ability of small arteries to constrict in response to increased intraluminal pressure. Although microRNAs have been shown to play a role in vascular smooth muscle function, their importance in the regulation of the myogenic response is not known. In this study, we investigate the role of microRNAs in the regulation of myogenic tone by using smooth muscle-specific and tamoxifen-inducible deletion of the endonuclease Dicer in mice. METHODS AND RESULTS: In order to avoid effects of Dicer deletion on smooth muscle differentiation and growth, we used an early time point (5 weeks) after the tamoxifen-induction of Dicer knockout (KO). At this time point, we found that myogenic tone was completely absent in the mesenteric arteries of Dicer KO mice. This was associated with a reduced pressure-induced Akt-phosphorylation, possibly via increased phosphatase and tensin homologue (PTEN) expression, which was found to be a target of miR-26a. Furthermore, loss of myogenic tone was associated with a decreased depolarization-induced calcium influx, and was restored by the L-type channel agonist Bay K 8644 or by transient stimulation with angiotensin II (Ang II). The effect of Ang II was dependent on AT1-receptors and activation of the PI3-kinase/Akt pathway. CONCLUSION: In this study we have identified novel mechanisms that regulate myogenic tone in resistance arteries, which involves microRNA-dependent control of PI3-kinase/Akt signalling and L-type calcium influx. Furthermore, we have demonstrated that transient stimulation by Ang II can have long-lasting effects by potentiating myogenic tone.


Subject(s)
Arterial Pressure , Mechanotransduction, Cellular , MicroRNAs/metabolism , Muscle, Smooth, Vascular/enzymology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Vasoconstriction , Vasodilation , Animals , Calcium Channel Agonists/pharmacology , Calcium Channels, L-Type/metabolism , Calcium Signaling , Cells, Cultured , DEAD-box RNA Helicases/deficiency , DEAD-box RNA Helicases/genetics , Enzyme Activation , Genotype , Mechanotransduction, Cellular/drug effects , Mesenteric Arteries/enzymology , Mice , Mice, Knockout , MicroRNAs/genetics , Muscle, Smooth, Vascular/drug effects , PTEN Phosphohydrolase/metabolism , Phenotype , Phosphorylation , Renin-Angiotensin System , Ribonuclease III/deficiency , Ribonuclease III/genetics , Time Factors , Transfection , Vasoconstriction/drug effects , Vasodilation/drug effects
15.
Microcirculation ; 21(3): 230-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24238368

ABSTRACT

The mechanical forces acting on SMC in the vascular wall are known to regulate processes such as vascular remodeling and contractile differentiation. However, investigations to elucidate the underlying mechanisms of mechanotransduction in smooth muscle have been hampered by technical limitations associated with mechanical studies on pressurized small arteries, due primarily to the small amount of available tissue. The murine portal vein is a relatively large vessel showing myogenic tone that in many respects recapitulates the properties of small resistance vessels. Studies on stretched portal veins to elucidate mechanisms of mechanotransduction in the vascular wall have shown that stretch-sensitive regulation of contractile differentiation is mediated via Rho-activation and actin polymerization, while stretch-induced growth is regulated by the MAPK pathway. In this review, we have summarized findings on mechanotransduction in the portal vein with focus on stretch-induced contractile differentiation and the role of calcium, actin polymerization and miRNAs in this response.


Subject(s)
Actins/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/physiology , Portal Vein/cytology , Portal Vein/physiology , Animals , Biomechanical Phenomena , Calcium Signaling , Cell Differentiation , Humans , Mechanotransduction, Cellular , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Cardiovascular , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/physiology , Polymerization
16.
J Vasc Res ; 50(5): 421-9, 2013.
Article in English | MEDLINE | ID: mdl-24080531

ABSTRACT

The G protein-coupled estrogen receptor GPER1/GPR30 is implicated in blood pressure regulation but the mechanisms are not identified. Here, we hypothesize that GPER1 controls blood pressure by regulating vascular smooth muscle cell Ca(2+) handling. Treatment with the GPER1 agonist G-1 (in the µM concentration range) acutely reduced spontaneous and synchronous Ca(2+) spike activity in A7r5 vascular smooth muscle cells expressing mRNA for GPER1. Furthermore, G-1 (1 µM) attenuated the thromboxane A2 analogue U46619-stimulated Ca(2+) spike activity but had no effect on the U46619-induced increase in the basal level of Ca(2+). The voltage-sensitive L-type Ca(2+) channel blocker nifedipine (100 nM) reduced Ca(2+) spike activity similar to G-1. Pharmacological, but not physiological, concentrations of the estrogen 17ß-estradiol reduced Ca(2+) spike activity. The GPER1 antagonist G-15 blocked G-1-induced downregulation of Ca(2+) spike activity, supporting a GPER1-dependent mechanism. G-1 (1 µM) and nifedipine (100 nM) attenuated the 30-mM KCl-evoked rise in intracellular Ca(2+) concentration, suggesting that G-1 blocks inflow of Ca(2+) via voltage-sensitive Ca(2+) channels. In conclusion, we demonstrate that the GPER1 agonist G-1 regulates vascular smooth muscle cell Ca(2+) handling by lowering Ca(2+) spike activity, suggesting a role for this mechanism in GPER1-mediated control of blood pressure. © 2013 S. Karger AG, Basel.


Subject(s)
Calcium/metabolism , Cyclopentanes/pharmacology , Estrogen Receptor alpha/drug effects , Quinolines/pharmacology , Receptors, G-Protein-Coupled/physiology , Animals , Benzodioxoles/pharmacology , Cell Line , Estradiol/pharmacology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Nifedipine/pharmacology , Rats , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors
17.
Commun Integr Biol ; 6(1): e22278, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23802033

ABSTRACT

The phenotype of smooth muscle cells is regulated by multiple environmental factors including mechanical forces. Mechanical stretch of mouse portal veins ex vivo has been shown to promote contractile differentiation by activation of the Rho-pathway, an effect that is dependent on the influx of calcium via L-type calcium channels. MicroRNAs have recently been demonstrated to play a significant role in the control of smooth muscle phenotype and in a recent report we investigated their role in vascular mechanosensing. By smooth muscle specific deletion of Dicer, we found that microRNAs are essential for smooth muscle differentiation in response to stretch by regulating CamKIIδ and L-type calcium channel expression. Furthermore, we suggest that loss of L-type calcium channels in Dicer KO is due to reduced expression of the smooth muscle-enriched microRNA, miR-145, which targets CamKIIδ. These results unveil a novel mechanism for miR-145 dependent regulation of smooth muscle phenotype.

18.
Int J Cardiol ; 168(4): 3370-80, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-23680596

ABSTRACT

OBJECTIVES: Polyamines are organic polycations playing an essential role in cell proliferation and differentiation, as well as in cell contractility, migration and apoptosis. These processes are known to contribute to restenosis, a pathophysiological process often occurring in patients submitted to revascularization procedures. We aimed to test the effect of α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, on vascular cell pathophysiology in vitro and in a rat model of carotid arteriotomy-induced (re)stenosis. METHODS: The effect of DFMO on primary rat smooth muscle cells (SMCs) and mouse microvascular bEnd.3 endothelial cells (ECs) was evaluated through the analysis of DNA synthesis, polyamine concentration, cell viability, cell cycle phase distribution and by RT-PCR targeting cyclins and genes belonging to the polyamine pathway. The effect of DFMO was then evaluated in arteriotomy-injured rat carotids through the analysis of cell proliferation and apoptosis, RT-PCR and immunohistochemical analysis of differential gene expression. RESULTS: DFMO showed a differential effect on SMCs and on ECs, with a marked, sustained anti-proliferative effect of DFMO at 3 and 8 days of treatment on SMCs and a less pronounced, late effect on bEnd.3 ECs at 8 days of DFMO treatment. DFMO applied perivascularly in pluronic gel at arteriotomy site reduced subsequent cell proliferation and preserved smooth muscle differentiation without affecting the endothelial coverage. Lumen area in DFMO-treated carotids was 49% greater than in control arteries 4 weeks after injury. CONCLUSIONS: Our data support the key role of polyamines in restenosis and suggest a novel therapeutic approach for this pathophysiological process.


Subject(s)
Carotid Stenosis/drug therapy , Carotid Stenosis/enzymology , Disease Models, Animal , Eflornithine/therapeutic use , Ornithine Decarboxylase Inhibitors , Ornithine Decarboxylase/metabolism , Animals , Cell Line , Cell Proliferation/drug effects , Cells, Cultured , Eflornithine/pharmacology , Male , Mice , Rats , Rats, Sprague-Dawley , Rats, Wistar
19.
PLoS One ; 8(5): e65135, 2013.
Article in English | MEDLINE | ID: mdl-23705032

ABSTRACT

Vascular smooth muscle cells are constantly exposed to mechanical force by the blood pressure, which is thought to regulate smooth muscle growth, differentiation and contractile function. We have previously shown that the expression of microRNAs (miRNAs), small non-coding RNAs, is essential for regulation of smooth muscle phenotype including stretch-dependent contractile differentiation. In this study, we have investigated the effect of mechanical stretch on miRNA expression and the role of stretch-sensitive miRNAs for intracellular signaling in smooth muscle. MiRNA array analysis, comparing miRNA levels in stretched versus non-stretched portal veins, revealed a dramatic decrease in the miR-144/451 cluster level. Because this miRNA cluster is predicted to target AMPK pathway components, we next examined activation of this pathway. Diminished miR-144/451 expression was inversely correlated with increased phosphorylation of AMPKα at Thr172 in stretched portal vein. Similar to the effect of stretch, contractile differentiation could be induced in non-stretched portal veins by the AMPK activator, AICAR. Transfection with miR-144/451 mimics reduced the protein expression level of mediators in the AMPK pathway including MO25α, AMPK and ACC. This effect also decreased AICAR-induced activation of the AMPK signaling pathway. In conclusion, our results suggest that stretch-induced activation of AMPK in vascular smooth muscle is in part regulated by reduced levels of miR-144/451 and that this effect may play a role in promoting contractile differentiation of smooth muscle cells.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Down-Regulation/genetics , MicroRNAs/genetics , Muscle, Smooth, Vascular/enzymology , Signal Transduction , Stress, Mechanical , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Aorta/drug effects , Aorta/metabolism , Base Sequence , Carotid Arteries/drug effects , Carotid Arteries/metabolism , Down-Regulation/drug effects , Enzyme Activation/drug effects , Male , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Molecular Sequence Data , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/enzymology , Phosphorylation/drug effects , Portal Vein/drug effects , Portal Vein/metabolism , Pressure , Ribonucleotides/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Transfection
20.
Eur J Nutr ; 52(7): 1755-69, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23262749

ABSTRACT

PURPOSE: We previously reported that two substrains of C57BL/6 mice respond differently to oats with respect to reduction in plasma cholesterol. Analysis of this difference might offer clues to mechanisms behind the cholesterol-lowering effect of oats. Here, we address the possible roles of hepatic steroid metabolism and the intestinal microbiota in this respect. METHODS: Female C57BL/6 mice were fed an atherogenic diet with oat bran (27 %) or control fibres for 4 weeks. RESULTS: C57BL/6 NCrl mice responded to oat bran with 19 ± 1 % (P < 0.001) lower plasma cholesterol, 40 ± 5% (P < 0.01) higher excretion of bile acids and increased expression of the bile acid-producing hepatic enzymes CYP7A1 and CYP8B1, but none of these effects were found in C57BL/6JBomTac mice. However, on control diet, C57BL/6JBomTac had tenfold higher expression of CYP7A1 and levels of hepatic cholesterol esters than C57BL/6NCrl mice. Plasma levels of fructosamine indicated improved glycemic control by oat bran in C57BL/6NCrl but not in C57BL/6JBomTac. C57BL/6JBomTac had higher intestinal microbiota diversity, but lower numbers of Enterobacteriaceae, Akkermansia and Bacteroides Fragilis than C57BL/6NCrl mice. Oat bran increased bacterial numbers in both substrains. Microbiota diversity was reduced by oats in C57BL/6JBomTac, but unaffected in C57BL/6NCrl. CONCLUSIONS: Our data do not support a connection between altered microbiota diversity and reduced plasma cholesterol, but the bacterial composition in the intestine may influence the effects of added fibres. The cholesterol-lowering properties of oats involve increased production of bile acids via the classical pathway with up-regulation of CYP7A1 and CYP8B1. Altered cholesterol or bile acid metabolism may interfere with the potential of oats to reduce plasma cholesterol.


Subject(s)
Avena/chemistry , Bile Acids and Salts/metabolism , Liver/enzymology , Microbiota , Animals , Body Weight , Cholesterol/blood , Cholesterol 7-alpha-Hydroxylase/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol Esters/metabolism , Diet, Atherogenic , Dietary Fiber/administration & dosage , Feces/chemistry , Female , Fructosamine/blood , Glucose Tolerance Test , Intestinal Absorption/physiology , Intestines/microbiology , Lipid Metabolism , Mice , Mice, Inbred C57BL , Multivariate Analysis , Principal Component Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Steroid 12-alpha-Hydroxylase/genetics , Steroid 12-alpha-Hydroxylase/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...