Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 114(4): 1477-85, 1997 Aug.
Article in English | MEDLINE | ID: mdl-9276957

ABSTRACT

Higher plants synthesize small heat-shock proteins (smHSPs) from five related gene families. The class I and II families encode cytosolic smHSPs. We characterized the class II smHSPs of pea (Pisum sativum) and compared them with class I smHSPs. Antibodies against recombinant HSP17.7, a class II smHSP, recognized four heat-inducible 17- to 18-kD polypeptides and did not cross-react with class I smHSPs. On sucrose gradients the class II smHSPs sedimented primarily at 8 Svedberg units, indicating that they are components of large complexes similar in size to class I smHSP complexes. However, the class I and II complexes were readily distinguishable by nondenaturing polyacrylamide gel electrophoresis and isoelectric focusing. Nondenaturing immune precipitations using anti-HSP17.7 or anti-HSP18.1 (a class I smHSP) antiserum provide further evidence that the class I and II smHSPs exist in different complexes, composed primarily of smHSPs. Recombinant HSP17.7 and HSP18.1 formed complexes of sizes similar to those formed in vivo. When these two smHSPs were mixed, denatured with urea, and then dialyzed, the distinct class I and II complexes again formed, each containing only HSP18.1 or HSP17.7. Thus, cytosolic smHSPs from two related gene families expressed simultaneously form distinct complexes in vivo, suggesting that they have subtly different functions.


Subject(s)
Heat-Shock Proteins/genetics , Pisum sativum/genetics , Antibody Specificity , Gene Expression , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/immunology , Hot Temperature , Immune Sera , Protein Conformation
3.
Mol Cell Biol ; 13(1): 238-47, 1993 Jan.
Article in English | MEDLINE | ID: mdl-8417329

ABSTRACT

Three related gene families of low-molecular-weight (LMW) heat shock proteins (HSPs) have been characterized in plants. We describe a fourth LMW HSP family, represented by PsHSP22.7 from Pisum sativum and GmHSP22.0 from Glycine max, and demonstrate that this family of proteins is endomembrane localized. PsHSP22.7 and GmHSP22.0 are 76.7% identical at the amino acid level. Both proteins have amino-terminal signal peptides and carboxyl-terminal sequences characteristic of endoplasmic reticulum (ER) retention signals. The two proteins closely resemble class I cytoplasmic LMW HSPs, suggesting that they evolved from the cytoplasmic proteins through the addition of the signal peptide and ER retention motif. The endomembrane localization of these proteins was confirmed by cell fractionation. The polypeptide product of PsHSP22.7 mRNA was processed to a smaller-M(r) form by canine pancreatic microsomes; in vivo, GmHSP22.0 polysomal mRNA was found to be predominantly membrane bound. In vitro-processed PsHSP22.7 corresponded in mass and pI to one of two proteins detected in ER fractions from heat-stressed plants by using anti-PsHSP22.7 antibodies. Like other LMW HSPs, PsHSP22.7 was observed in higher-molecular-weight structures with apparent masses of between 80 and 240 kDa. The results reported here indicate that members of this new class of LMW HSPs are most likely resident ER proteins and may be similar in function to related LMW HSPs in the cytoplasm. Along with the HSP90 and HSP70 classes of HSPs, this is the third category of HSPs localized to the ER.


Subject(s)
Fabaceae/metabolism , Heat-Shock Proteins/metabolism , Plants, Medicinal , Amino Acid Sequence , Cell Compartmentation , Cloning, Molecular , Endoplasmic Reticulum/metabolism , Fabaceae/genetics , Fabaceae/ultrastructure , Genes, Plant , Heat-Shock Proteins/genetics , Hot Temperature , Intracellular Membranes/metabolism , Molecular Sequence Data , Protein Processing, Post-Translational , Sequence Alignment
4.
Plant Physiol ; 96(4): 1038-47, 1991 Aug.
Article in English | MEDLINE | ID: mdl-16668295

ABSTRACT

Plants synthesize several families of low molecular weight (LMW) heat shock proteins (HSPs) in response to elevated temperatures. We have characterized two cDNAs, HSP18.1 and HSP17.9, that encode members of the class I family of LMW HSPs from pea (Pisum sativum). In addition, we investigated the expression of these HSPs at the mRNA and protein levels during heat stress and recovery. HSP18.1 and HSP17.9 are 82.1% identical at the amino acid level and are 80.8 to 92.9% identical to class I LMW HSPs of other angiosperms. Heat stress experiments were performed using intact seedlings subjected to a gradual temperature increase and held at a maximum temperature of 30 to 42 degrees Celsius for 4 hours. HSP18.1 and HSP17.9 mRNA levels peaked at the beginning of the maximum temperature period and declined rapidly after the stress period. Antiserum against a HSP18.1 fusion protein recognized both HSP18.1 and HSP17.9 but not members of other families of LMW HSPs. The accumulation of HSP18.1-immunodetected protein was proportional to the severity of the heat stress, and the protein had a half-life of 37.7 +/- 8 hours. The long half-life of these proteins supports the hypothesis that they are involved in establishing thermotolerance.

5.
Plant Physiol ; 93(4): 1626-33, 1990 Aug.
Article in English | MEDLINE | ID: mdl-16667666

ABSTRACT

Two-dimensional gels of in vitro translation products of mRNAs isolated from quiescent wheat (Triticum aestivum) embryos demonstrate the presence of mRNAs encoding heat shock proteins (hsps). There were no detectable differences in the mRNAs found in mature embryos from field grown, from 25 degrees C growth chamber cultivated, or from plants given 38 degrees C heat stresses at different stages of seed development. The mRNAs encoding several developmentally dependent (dd) hsps were among those found in the dry embryos. Stained two-dimensional gels of proteins extracted from 25 degrees C growth chamber cultivated wheat embryos demonstrated the presence of hsps, including dd hsps. A study of the relationship of preexisting hsp mRNAs and the heat shock response during early imbibition was undertaken. Heat shocks (42 degrees C, 90 minutes) were administered following 1.5, 16, and 24 hours of 25 degrees C imbibition. While the mRNAs encoding the low molecular weight hsps decayed rapidly upon imbibition, the mRNAs for dd hsps persisted longer and were still detectable following 16 hours of imbibition. After 1.5 hours of imbibition, the mRNAs for the dd hsps did not accumulate in response to heat shock, even though the synthesis of the proteins was enhanced. Thus, an applied heat shock appeared to lead to the preferential translation of preexisting dd hsp mRNAs. The mRNAs for the other hsps, except hsp 70, were newly transcribed at all of the imbibition times examined. The behavior of the hsp 70 group of proteins during early imbibition was examined by RNA gel blot analysis. The mRNAs for the hsp 70 group were detectable at moderate levels in the quiescent embryo. The relative level of hsp 70 mRNA increased after the onset of imbibition at 25 degrees C and remained high through 25.5 hours of prior imbibition. The maximal levels of these mRNAs at 25 degrees C was reached at 17.5 hours of imbibition. Heat shock caused modest additional accumulation of hsp70 mRNA at later imbibition times.

8.
Plant Physiol ; 90(2): 598-605, 1989 Jun.
Article in English | MEDLINE | ID: mdl-16666814

ABSTRACT

Seeds frequently face a hostile environment during early germination. In order to determine whether seeds have evolved unique mechanisms to deal with such environments, a survey of the heat shock response in isolated embryos of wheat (Triticum aestivum L.) was undertaken. Embryos simultaneously heat shocked and labeled following several different periods of prior imbibition up to 12 hours synthesized many groups of heat shock proteins (hsps) typical of other plant and animal systems. Also, five developmentally dependent hsps, present only in treatments imbibed less than 6 hours prior to heat shock, were detected. These proteins have relative molecular masses of 14, 40, 46, 58, and 60 kilodaltons. One of the developmentally dependent hsps is among the most highly labeled hsps found in early imbibed embryos. The possibility that this protein is the E(m) protein is discussed. The hypothesis that the capacity for hsp synthesis is affected by seed vigor was also tested. The heat shock responses of embryos from two high and two low vigor seed lots were compared using one- and two-dimensional electrophoresis of labelled protein extracts. The results indicate that both of the low vigor lots tested had weaker heat shock responses than their high vigor counterparts overall. Not all hsps were relatively less abundant in low vigor embryos. The developmentally dependent hsps showed little relationship to vigor. Some of the developmentally dependent hsps were actually made in greater amounts, relative to other proteins, in the low vigor seed lots. The results presented here demonstrate that imbibing embryos are capable of expressing an enhanced heat shock response, and that this response is related to seed vigor.

SELECTION OF CITATIONS
SEARCH DETAIL
...