Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Article in English | MEDLINE | ID: mdl-33249407

ABSTRACT

BACKGROUND: We aimed to detect SARS-CoV-2 serum antibodies in the general population of the Netherlands and identify risk factors for seropositivity amidst the first COVID-19 epidemic wave. METHODS: Participants (n=3207, aged 2-90 years), enrolled from a previously established nationwide serosurveillance study, provided a self-collected fingerstick blood sample and completed a questionnaire (median inclusion date 3 April 2020). IgG antibodies targeted against the spike S1-protein of SARS-CoV-2 were quantified using a validated multiplex-immunoassay. Seroprevalence was estimated controlling for survey design, individual pre-pandemic concentration, and test performance. Random-effects logistic regression identified risk factors for seropositivity. RESULTS: Overall seroprevalence in the Netherlands was 2.8% (95% CI 2.1 to 3.7), with no differences between sexes or ethnic background, and regionally ranging between 1.3 and 4.0%. Estimates were highest among 18-39 year-olds (4.9%), and lowest in children 2-17 years (1.7%). Multivariable analysis revealed that persons taking immunosuppressants and those from the Orthodox-Reformed Protestant community had over four times higher odds of being seropositive compared to others. Anosmia/ageusia was the most discriminative symptom between seropositive (53%) and seronegative persons (4%, p<0.0001). Antibody concentrations in seropositive persons were significantly higher in those with fever or dyspnoea in contrast to those without (p=0.01 and p=0.04, respectively). CONCLUSIONS: In the midst of the first epidemic wave, 2.8% of the Dutch population was estimated to be infected with SARS-CoV-2, that is, 30 times higher than reported. This study identified independent groups with increased odds for seropositivity that may require specific surveillance measures to guide future protective interventions internationally, including vaccination once available.

2.
Sci Rep ; 6: 38240, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27905535

ABSTRACT

The demand for improved pertussis vaccines is urgent due to the resurgence of whooping cough. A deeper understanding of the mode of action of pertussis vaccines is required to achieve this improvement. The vaccine-induced effects of a candidate outer membrane vesicle vaccine (omvPV) and a classical protective but reactogenic whole cell vaccine (wPV) were comprehensively compared in mice. The comparison revealed essential qualitative and quantitative differences with respect to immunogenicity and adverse effects for these vaccines. Both vaccines stimulated a mixed systemic Th1/Th2/Th17 response. Remarkably, omvPV evoked higher IgG levels, lower systemic pro-inflammatory cytokine responses and enhanced splenic gene expression than wPV. The omvPV-induced transcriptome revealed gene signatures of the IFN-signaling pathway, anti-inflammatory signatures that attenuate LPS responses, anti-inflammatory metabolic signatures, and IgG responses. Upon intranasal challenge, both immunized groups were equally efficient in clearing Bordetella pertussis from the lungs. This study importantly shows that immunization with omvPV provides a milder inflammatory responses but with equal protection to bacterial colonization and induction of protective antibody and Th1/Th17 type immune responses compared to wPV. These results emphasize the potential of omvPV as a safe and effective next-generation pertussis vaccine.


Subject(s)
Antibodies, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , Bordetella pertussis/immunology , Gene Expression Regulation/immunology , Immunoglobulin G/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Bacterial Outer Membrane Proteins/pharmacology , Bacterial Vaccines/pharmacology , Female , Gene Expression Regulation/drug effects , Mice , Mice, Inbred BALB C
3.
Sci Rep ; 6: 25064, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27118638

ABSTRACT

Current acellular pertussis (aP) vaccines promote a T helper 2 (Th2)-dominated response, while Th1/Th17 cells are protective. As our previous study showed, after adding a non-toxic TLR4 ligand, LpxL1, to the aP vaccine in mice, the Bordetella pertussis-specific Th2 response is decreased and Th1/Th17 responses are increased as measured at the cytokine protein level. However, how this shift in Th response by LpxL1 addition is regulated at the gene expression level remains unclear. Transcriptomics analysis was performed on purified CD4(+) T cells of control and vaccinated mice after in vitro restimulation with aP vaccine antigens. Multiple key factors in Th differentiation, including transcription factors, cytokines, and receptors, were identified within the differentially expressed genes. Upregulation of Th2- and downregulation of follicular helper T cell-associated genes were found in the CD4(+) T cells of both aP- and aP+LpxL1-vaccinated mice. Genes exclusively upregulated in CD4(+) T cells of aP+LpxL1-vaccinated mice included Th1 and Th17 signature cytokine genes Ifng and Il17a respectively. Overall, our study indicates that after addition of LpxL1 to the aP vaccine the Th2 component is not downregulated at the gene expression level. Rather an increase in expression of Th1- and Th17-associated genes caused the shift in Th subset outcome.


Subject(s)
Adjuvants, Immunologic/metabolism , Gene Expression Profiling , Pertussis Vaccine/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Toll-Like Receptor 4/metabolism , Animals , Antigens, Bacterial/metabolism , Mice , Pertussis Vaccine/administration & dosage , Vaccines, Acellular/administration & dosage , Vaccines, Acellular/immunology
4.
PLoS One ; 11(2): e0149576, 2016.
Article in English | MEDLINE | ID: mdl-26894582

ABSTRACT

Pertussis, caused by infection with the gram negative B. pertussis bacterium, is a serious respiratory illness that can last for months. While B. pertussis infection rates are estimated between 1-10% in the general population, notifications of symptomatic pertussis only comprise 0.01-0.1% indicating that most individuals clear B. pertussis infections without developing (severe) clinical symptoms. In this study we investigated whether genetic risk factors are involved in the development of symptomatic pertussis upon B. pertussis infection. Single-nucleotide polymorphisms (SNPs) in candidate genes, MBL2, IL17A, TNFα, VDR, and IL10 were genotyped in a unique Dutch cohort of symptomatic clinically confirmed (ex-)pertussis patients and in a Dutch population cohort. Of the seven investigated SNPs in five genes, a polymorphism in the Vitamin D receptor (VDR) gene (rs10735810) was associated with pertussis. The VDR major allele and its homozygous genotype were more present in the symptomatic pertussis patient cohort compared to the control population cohort. Interestingly, the VDR major allele correlated also with the duration of reported pertussis symptoms. Vitamin D3 (VD3) and VDR are important regulators of immune activation. Altogether, these findings suggest that polymorphisms in the VDR gene may affect immune activation and the clinical outcome of B. pertussis infection.


Subject(s)
Genetic Predisposition to Disease , Receptors, Calcitriol/genetics , Whooping Cough/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
5.
Clin Immunol ; 157(2): 205-15, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25728491

ABSTRACT

Pertussis is occurring in highly vaccinated populations, suggesting insufficient protective memory CD4(+) T cells to Bordetella (B.) pertussis. P.69 Pertactin (P.69 Prn) is an important virulence factor of B. pertussis, and P.69 Prn7-24 is an immunodominant CD4(+) T cell epitope in mice and broadly recognized in humans. P.69 Prn7-24 peptide-MHC II tetramers (DRB4*0101/IVKT) were designed to ex vivo interrogate the presence and differentiation state of P.69 Prn7-24 specific CD4(+) T cells in six symptomatic pertussis cases. Cases with relatively more CD45RA(-)CCR7(+) central memory CD4(+)DRB4*0101/IVKT(+) T cells secreted Th1 cytokines, while cases with more CD45RA(-)CCR7(-) effector memory CD4(+)DRB4*0101/IVKT(+) T cells secreted both Th1 and Th2 cytokines upon peptide stimulation. CD45RA(+)CCR7(-) terminal differentiation pattern was associated with low or non-functionality based on cytokine secretion. This study provides proof of principle for further peptide-MHC II tetramer guided approaches in the elucidation of limited immunological memory to B. pertussis and the resurgence of pertussis.


Subject(s)
Bordetella pertussis/immunology , HLA-DRB1 Chains/immunology , Immunologic Memory/immunology , Whooping Cough/immunology , Adolescent , Adult , Aged , Antibodies, Bacterial , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , CD4-Positive T-Lymphocytes , Child , Child, Preschool , Epitopes, T-Lymphocyte , Female , Humans , Leukocytes, Mononuclear , Male , Middle Aged , Pertussis Toxin/immunology , Virulence Factors, Bordetella/immunology , Young Adult
6.
Vaccine ; 33(12): 1483-91, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25659267

ABSTRACT

Whole cell pertussis (wP) vaccines are gradually being replaced by aluminum salt-adjuvanted acellular pertussis (aP) vaccines. These promote CD4(+) T cell responses with a non-protective Th2 component, while protective immune mechanisms to B. pertussis may rather involve long-lived Th1/Th17 type CD4(+) T cells. Here we asked whether addition of a non-toxic meningococcal LPS derivative, LpxL1, as adjuvant can favorably modulate the aP-induced pertussis-specific CD4(+) T cell response in mice. To assess the effect of TLR4 ligation, Th type, quantity, and memory potential of pertussis-specific CD4(+) T cells were determined at the single-cell level after aP and aP+LpxL1 vaccination using intracellular cytokine staining and MHC class II tetramers. Adding LpxL1 to the aP vaccine weakened the Th2 component and strengthened the Th1/Th17 component of the specific CD4(+) T cell response. Notably, LpxL1 addition also induced higher frequencies of tetramer positive CD4(+) T cells in draining lymph nodes or blood, depending on the phase after vaccination. Moreover, there was a net profit in the number of CD4(+) T cells with a central memory phenotype, preferred for long-term immunity. Thus, adding a TLR4 ligand as adjuvant to a current aP vaccine was associated with a more favorable pertussis-specific CD4(+) T cell response.


Subject(s)
Adjuvants, Immunologic , CD4-Positive T-Lymphocytes/immunology , Cytokines/isolation & purification , Diphtheria-Tetanus-acellular Pertussis Vaccines/immunology , Immunologic Memory , Toll-Like Receptor 4/immunology , Animals , Cytokines/immunology , Immunization, Secondary , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Phenotype , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunology
7.
PLoS One ; 9(8): e104548, 2014.
Article in English | MEDLINE | ID: mdl-25137043

ABSTRACT

Worldwide resurgence of pertussis necessitates the need for improvement of pertussis vaccines and vaccination strategies. Since natural infections induce a longer-lasting immunity than vaccinations, detailed knowledge of the immune responses following natural infection can provide important clues for such improvement. The purpose was to elucidate the kinetics of the protective immune response evolving after experimental Bordetella pertussis (B. pertussis) infection in mice. Data were collected from (i) individual analyses, i.e. microarray, flow cytometry, multiplex immunoassays, and bacterial clearance; (ii) twelve time points during the infection; and (iii) different tissues involved in the immune responses, i.e. lungs, spleen and blood. Combined data revealed detailed insight in molecular and cellular sequence of events connecting different phases (innate, bridging and adaptive) of the immune response following the infection. We detected a prolonged acute phase response, broad pathogen recognition, and early gene signatures of subsequent T-cell recruitment in the lungs. Activation of particular transcription factors and specific cell markers provided insight into the time course of the transition from innate towards adaptive immune responses, which resulted in a broad spectrum of systemic antibody subclasses and splenic Th1/Th17 memory cells against B. pertussis. In addition, signatures preceding the local generation of Th1 and Th17 cells as well as IgA in the lungs, considered key elements in protection against B. pertussis, were established. In conclusion, molecular and cellular immunological processes in response to live B. pertussis infection were unraveled, which may provide guidance in selecting new vaccine candidates that should evoke local and prolonged protective immune responses.


Subject(s)
Adaptive Immunity , Antibodies, Bacterial/biosynthesis , Bordetella Infections/immunology , Gene Expression Regulation/immunology , Immunity, Innate , Lung/immunology , Animals , Bordetella Infections/genetics , Bordetella Infections/microbiology , Bordetella Infections/pathology , Bordetella pertussis/immunology , Complement Activation , Cytokines/genetics , Cytokines/immunology , Female , Host-Pathogen Interactions/immunology , Immunoglobulin A/biosynthesis , Immunologic Memory , Lung/microbiology , Lung/pathology , Mice , Mice, Inbred BALB C , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Spleen/immunology , Spleen/microbiology , Spleen/pathology , Th1 Cells/immunology , Th1 Cells/microbiology , Th1 Cells/pathology , Th17 Cells/immunology , Th17 Cells/microbiology , Th17 Cells/pathology , Transcription Factors/genetics , Transcription Factors/immunology , alpha-Defensins/genetics , alpha-Defensins/immunology
8.
PLoS One ; 9(1): e85227, 2014.
Article in English | MEDLINE | ID: mdl-24454823

ABSTRACT

For a better understanding of the maintenance of immune mechanisms to Bordetella pertussis (Bp) in relation to age, we investigated the dynamic range of specific B cell responses in various age-groups at different time points after a laboratory confirmed pertussis infection. Blood samples were obtained in a Dutch cross sectional observational study from symptomatic pertussis cases. Lymphocyte subpopulations were phenotyped by flowcytometry before and after culture. Memory B (Bmem) cells were differentiated into IgG antibody secreting cells (ASC) by polyclonal stimulation and detected by an ELISPOT assay specific for pertussis antigens pertussis toxin (Ptx), filamentous haemagglutinin (FHA) and pertactin (Prn). Bp antigen specific IgG concentrations in plasma were determined using multiplex technology. The majority of subjects having experienced a clinical pertussis episode demonstrated high levels of both Bp specific IgG and Bmem cell levels within the first 6 weeks after diagnosis. Significantly lower levels were observed thereafter. Waning of cellular and humoral immunity to maintenance levels occurred within 9 months after antigen encounter. Age was found to determine the maximum but not base-line frequencies of Bmem cell populations; higher levels of Bmem cells specific for Ptx and FHA were reached in adults and (pre-) elderly compared to under-fours and schoolchildren in the first 6 weeks after Bp exposure, whereas not in later phases. This age effect was less obvious for specific IgG levels. Nonetheless, subjects' levels of specific Bmem cells and specific IgG were weakly correlated. This is the first study to show that both age and closeness to last Bp encounter impacts the size of Bp specific Bmem cell and plasma IgG levels.


Subject(s)
B-Lymphocytes/immunology , Immunologic Memory , Whooping Cough/immunology , Adolescent , Adult , Age Factors , Aged , Aging/immunology , Child , Female , Flow Cytometry , Humans , Immunoglobulin G/immunology , Infant , Longitudinal Studies , Lymphocyte Count , Male , Middle Aged , Statistics, Nonparametric , Time Factors
9.
PLoS One ; 8(12): e83583, 2013.
Article in English | MEDLINE | ID: mdl-24391789

ABSTRACT

Pertussis is still occurring in highly vaccinated populations, affecting individuals of all ages. Long-lived Th1 CD4(+) T cells are essential for protective immunity against pertussis. For better understanding of the limited immunological memory to Bordetella pertussis, we used a panel of Pertactin and Pertussis toxin specific peptides to interrogate CD4(+) T cell responses at the epitope level in a unique cohort of symptomatic pertussis patients of different ages, at various time intervals after infection. Our study showed that pertussis epitope-specific T cell responses contained Th1 and Th2 components irrespective of the epitope studied, time after infection, or age. In contrast, the breadth of the pertussis-directed CD4(+) T cell response seemed dependent on age and closeness to infection. Multi-epitope specificity long-term after infection was lost in older age groups. Detailed knowledge on pertussis specific immune mechanisms and their insufficiencies is important for understanding resurgence of pertussis in highly vaccinated populations.


Subject(s)
Aging/immunology , Bordetella pertussis/immunology , CD4-Positive T-Lymphocytes/immunology , Immunologic Memory , Adult , Aging/pathology , Amino Acid Sequence , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , Bordetella pertussis/genetics , CD4-Positive T-Lymphocytes/cytology , Cell Proliferation , Cohort Studies , Cross-Sectional Studies , Cytokines/metabolism , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Lymphocyte Activation , Molecular Sequence Data , Pertussis Toxin/genetics , Pertussis Toxin/immunology , Pertussis Vaccine/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Time Factors , Virulence Factors, Bordetella/genetics , Virulence Factors, Bordetella/immunology , Whooping Cough/immunology , Whooping Cough/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...