Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Clin Transl Med ; 14(4): e1648, 2024 04.
Article in English | MEDLINE | ID: mdl-38602256

ABSTRACT

BACKGROUND: Understanding how to modulate the microenvironment of tumors that are resistant to immune checkpoint inhibitors represents a major challenge in oncology.Here we investigate the ability of USP7 inhibitors to reprogram the tumor microenvironment (TME) by inhibiting secretion of vascular endothelial growth factor (VEGF) from fibroblasts. METHODS: To understand the role played by USP7 in the TME, we systematically evaluated the effects of potent, selective USP7 inhibitors on co-cultures comprising components of the TME, using human primary cells. We also evaluated the effects of USP7 inhibition on tumor growth inhibition in syngeneic models when dosed in combination with immune checkpoint inhibitors (ICIs). RESULTS: Abrogation of VEGF secretion from fibroblasts in response to USP7 inhibition resulted in inhibition of tumor neoangiogenesis and increased tumor recruitment of CD8-positive T-lymphocytes, leading to significantly improved sensitivity to immune checkpoint inhibitors. In syngeneic models, treatment with USP7 inhibitors led to striking tumor responses resulting in significantly improved survival. CONCLUSIONS: USP7-mediated reprograming of the TME is not linked to its previously characterized role in modulating MDM2 but does require p53 and UHRF1 in addition to the well-characterized VEGF transcription factor, HIF-1α. This represents a function of USP7 that is unique to fibroblasts, and which is not observed in cancer cells or other components of the TME. Given the potential for USP7 inhibitors to transform "immune desert" tumors into "immune responsive" tumors, this paves the way for a novel therapeutic strategy combining USP7 inhibitors with immune checkpoint inhibitors (ICIs).


Subject(s)
Neoplasms , Ubiquitin-Specific Peptidase 7 , Vascular Endothelial Growth Factor A , Humans , CCAAT-Enhancer-Binding Proteins/pharmacology , Fibroblasts/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Neovascularization, Pathologic/drug therapy , Tumor Microenvironment , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors
2.
ACS Med Chem Lett ; 9(3): 238-243, 2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29541367

ABSTRACT

Ubiquitin specific protease 7 (USP7, HAUSP) has become an attractive target in drug discovery due to the role it plays in modulating Mdm2 levels and consequently p53. Increasing interest in USP7 is emerging due to its potential involvement in oncogenic pathways as well as possible roles in both metabolic and immune disorders in addition to viral infections. Potent, novel, and selective inhibitors of USP7 have been developed using both rational and structure-guided design enabled by high-resolution cocrystallography. Initial hits were identified via fragment-based screening, scaffold-hopping, and hybridization exercises. Two distinct subseries are described along with associated structure-activity relationship trends, as are initial efforts aimed at developing compounds suitable for in vivo experiments. Overall, these discoveries will enable further research into the wider biological role of USP7.

3.
Nat Chem Biol ; 14(2): 118-125, 2018 02.
Article in English | MEDLINE | ID: mdl-29200206

ABSTRACT

Given the importance of ubiquitin-specific protease 7 (USP7) in oncogenic pathways, identification of USP7 inhibitors has attracted considerable interest. Despite substantial efforts, however, the development of validated deubiquitinase (DUB) inhibitors that exhibit drug-like properties and a well-defined mechanism of action has proven particularly challenging. In this article, we describe the identification, optimization and detailed characterization of highly potent (IC50 < 10 nM), selective USP7 inhibitors together with their less active, enantiomeric counterparts. We also disclose, for the first time, co-crystal structures of a human DUB enzyme complexed with small-molecule inhibitors, which reveal a previously undisclosed allosteric binding site. Finally, we report the identification of cancer cell lines hypersensitive to USP7 inhibition (EC50 < 30 nM) and demonstrate equal or superior activity in these cell models compared to clinically relevant MDM2 antagonists. Overall, these findings demonstrate the tractability and druggability of DUBs, and provide important tools for additional target validation studies.


Subject(s)
Antineoplastic Agents/chemistry , Drug Discovery , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Allosteric Site , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Kinetics , Oxidation-Reduction , Protease Inhibitors/chemistry , Protein Binding , Protein Conformation , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Substrate Specificity , Tumor Suppressor Protein p53/chemistry
4.
Chemistry ; 19(21): 6718-23, 2013 May 17.
Article in English | MEDLINE | ID: mdl-23589420

ABSTRACT

The first enantiospecific total synthesis of the antibacterial natural product (+)-pleuromutilin has been achieved. The approach includes the synthesis of a non-racemic cyclisation substrate from (+)-trans-dihydrocarvone, a highly selective SmI2-mediated cyclisation cascade, an electron transfer reduction of a hindered ester, and the first efficient conversion of (+)-mutilin to the target.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Biological Products/chemical synthesis , Ketones/chemistry , Polycyclic Compounds/chemistry , Anti-Bacterial Agents/chemistry , Biological Products/chemistry , Cyclization , Cyclohexane Monoterpenes , Diterpenes/chemical synthesis , Diterpenes/chemistry , Molecular Structure , Monoterpenes/chemical synthesis , Monoterpenes/chemistry , Stereoisomerism , Pleuromutilins
5.
J Am Chem Soc ; 135(1): 474-87, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23205640

ABSTRACT

Direct electrophilic borylation using Y(2)BCl (Y(2) = Cl(2) or o-catecholato) with equimolar AlCl(3) and a tertiary amine has been applied to a wide range of arenes and heteroarenes. In situ functionalization of the ArBCl(2) products is possible with TMS(2)MIDA, to afford bench-stable and easily isolable MIDA-boronates in moderate to good yields. According to a combined experimental and computational study, the borylation of activated arenes at 20 °C proceeds through an S(E)Ar mechanism with borenium cations, [Y(2)B(amine)](+), the key electrophiles. For catecholato-borocations, two amine dependent reaction pathways were identified: (i) With [CatB(NEt(3))](+), an additional base is necessary to accomplish rapid borylation by deprotonation of the borylated arenium cation (σ complex), which otherwise would rather decompose to the starting materials than liberate the free amine to effect deprotonation. Apart from amines, the additional base may also be the arene itself when it is sufficiently basic (e.g., N-Me-indole). (ii) When the amine component of the borocation is less nucleophilic (e.g., 2,6-lutidine), no additional base is required due to more facile amine dissociation from the boron center in the borylated arenium cation intermediate. Borenium cations do not borylate poorly activated arenes (e.g., toluene) even at high temperatures; instead, the key electrophile in this case involves the product from interaction of AlCl(3) with Y(2)BCl. When an extremely bulky amine is used, borylation again does not proceed via a borenium cation; instead, a number of mechanisms are feasible including via a boron electrophile generated by coordination of AlCl(3) to Y(2)BCl, or by initial (heteroarene)AlCl(3) adduct formation followed by deprotonation and transmetalation.


Subject(s)
Amines/chemistry , Boron Compounds/chemical synthesis , Hydrocarbons, Aromatic/chemistry , Imino Acids/chemical synthesis , Boron Compounds/chemistry , Imino Acids/chemistry , Models, Molecular , Molecular Structure
6.
Chem Commun (Camb) ; 47(46): 12459-61, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22022702

ABSTRACT

Electrophilic direct borylation is facilitated, and arene substrate scope enhanced, by using electrophiles derived from inexpensive reagents; specifically an amine, BCl(3) and AlCl(3).

7.
Org Biomol Chem ; 9(7): 2433-51, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21327225

ABSTRACT

The cis-hydrindane motif is found in a number of natural products that display important biological activity. A flexible, stereoselective approach to the framework has been developed that features highly diastereoselective, SmI(2)-mediated cyclisations. The strategy has been exploited in the first synthesis of the proposed structure of faurinone and an approach to the skeleton of the antibacterial natural product, pleuromutilin.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Indans/chemistry , Samarium/chemistry , Biological Products/chemistry , Cyclization , Diterpenes/chemical synthesis , Models, Molecular , Molecular Structure , Oxidation-Reduction , Polycyclic Compounds , Stereoisomerism , Pleuromutilins
9.
Chem Commun (Camb) ; (16): 1916-7, 2008 Apr 28.
Article in English | MEDLINE | ID: mdl-18401517

ABSTRACT

Readily prepared beta-silyl substituted crotylzinc reagents undergo highly selective allylation of carbonyl compounds leading to syn-homoallylic alcohols.

11.
J Am Chem Soc ; 129(9): 2691-9, 2007 Mar 07.
Article in English | MEDLINE | ID: mdl-17290998

ABSTRACT

The participation of alkynylboronates in [4 + 2] cycloadditions has been investigated using both kinetic and DFT studies. Kinetic studies of the cycloaddition of tetrazine 1 with alkynylboronate 2 strongly suggest that a concerted cycloaddition mechanism is in operation. This mechanism has been confirmed by DFT calculations; moreover, a highly synchronous transition state appears to operate in this process. The experimentally observed poor reactivity of electron-rich dienes with alkynylboronates has also been confirmed by theoretical studies by analyzing the transition states of the cycloadditions with bis-2,5-trimethylsilyloxyfuran. The surprising conclusion has been made that alkynylboronates are relatively electron rich and have a cycloaddition reactivity that resembles that of acetylene. In contrast, the related dichloroalkynylborane cycloaddition reactivity resembles that of dimethylacetylene dicarboxylate.

12.
Org Biomol Chem ; 4(23): 4278-80, 2006 Dec 07.
Article in English | MEDLINE | ID: mdl-17102871

ABSTRACT

A series of 3,6-dichloro-1H-pyridazin-4-ones have been prepared via the cycloaddition of 3,6-dichlorotetrazine with alkynylboronates, and their employment as useful synthetic intermediates was highlighted through a selection of highly regioselective C-O, C-S and C-C bond forming reactions.


Subject(s)
Pyridazines/chemical synthesis , Boronic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...