Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 17: 1188858, 2023.
Article in English | MEDLINE | ID: mdl-37545881

ABSTRACT

Background: We performed a systematic review that identified at least 9,000 scientific papers on PubMed that include immunofluorescent images of cells from the central nervous system (CNS). These CNS papers contain tens of thousands of immunofluorescent neural images supporting the findings of over 50,000 associated researchers. While many existing reviews discuss different aspects of immunofluorescent microscopy, such as image acquisition and staining protocols, few papers discuss immunofluorescent imaging from an image-processing perspective. We analyzed the literature to determine the image processing methods that were commonly published alongside the associated CNS cell, microscopy technique, and animal model, and highlight gaps in image processing documentation and reporting in the CNS research field. Methods: We completed a comprehensive search of PubMed publications using Medical Subject Headings (MeSH) terms and other general search terms for CNS cells and common fluorescent microscopy techniques. Publications were found on PubMed using a combination of column description terms and row description terms. We manually tagged the comma-separated values file (CSV) metadata of each publication with the following categories: animal or cell model, quantified features, threshold techniques, segmentation techniques, and image processing software. Results: Of the almost 9,000 immunofluorescent imaging papers identified in our search, only 856 explicitly include image processing information. Moreover, hundreds of the 856 papers are missing thresholding, segmentation, and morphological feature details necessary for explainable, unbiased, and reproducible results. In our assessment of the literature, we visualized current image processing practices, compiled the image processing options from the top twelve software programs, and designed a road map to enhance image processing. We determined that thresholding and segmentation methods were often left out of publications and underreported or underutilized for quantifying CNS cell research. Discussion: Less than 10% of papers with immunofluorescent images include image processing in their methods. A few authors are implementing advanced methods in image analysis to quantify over 40 different CNS cell features, which can provide quantitative insights in CNS cell features that will advance CNS research. However, our review puts forward that image analysis methods will remain limited in rigor and reproducibility without more rigorous and detailed reporting of image processing methods. Conclusion: Image processing is a critical part of CNS research that must be improved to increase scientific insight, explainability, reproducibility, and rigor.

2.
Life (Basel) ; 12(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36143345

ABSTRACT

The number of reported cases of neurodevelopmental disorders has increased significantly in the last few decades, but the etiology of these diseases remains poorly understood. There is evidence of a fundamental link between genetic abnormalities and symptoms of autism spectrum disorders (ASDs), and the most common monogenetic inheritable form of ASDs is Fragile X Syndrome (FXS). Previous studies indicate that FXS is linked to glutamate signaling regulation by the G-protein-coupled metabotropic glutamate receptor 5 (mGluR5), which has been shown to have a regulatory role in neuroinflammation. We characterized the effect of knocking out mGluR5 in an organism known to have complex cognitive functions-the rat. The heterozygous phenotype is the most clinically relevant; therefore, we performed analysis in heterozygous pups. We showed developmental abnormalities in heterozygous mGluR5 knockout rats, as well as a significant increase in chemokine (C-X-C motif) ligand 1 (CXCL) expression, a hallmark indicator of early onset inflammation. We quantified an increase in microglial density in the knockout pups and quantified morphological phenotypes representative of greater reactivity in the male vs. female and postnatal day 28 heterozygous pups compared to postnatal day 14 heterozygous pups. In response to injury, reactive microglia release matrix metalloproteases, contribute to extracellular matrix (ECM) breakdown, and are responsible for eradicating cellular and molecular debris. In our study, the changes in microglial density and reactivity correlated with abnormalities in the mRNA expression levels of ECM proteins and with the density of perineuronal nets. We saw atypical neuropsychiatric behavior in open field and elevated plus tests in heterozygous pups compared to wild-type litter and age-matched controls. These results demonstrate the pathological potential of the mGluR5 knockout in rats and further support the presence of neuroinflammatory roots in ASDs.

3.
Bioeng Transl Med ; 7(2): e10265, 2022 May.
Article in English | MEDLINE | ID: mdl-35600642

ABSTRACT

Organotypic brain slice models are an ideal technological platform to investigate therapeutic options for hypoxic-ischemic (HI) brain injury, a leading cause of morbidity and mortality in neonates. The brain exhibits regional differences in the response to HI injury in vivo. This can be modeled using organotypic brain slices, which maintain three-dimensional regional structures and reflect the regional differences in injury response. Here, we developed an organotypic whole hemisphere (OWH) slice culture model of HI injury using the gyrencephalic ferret brain at a developmental stage equivalent to a full-term human infant in order to better probe region-specific cellular responses to injury. Each slice encompassed the cortex, corpus callosum, subcortical white matter, hippocampus, basal ganglia, and thalamus. Regional responses to treatment with either erythropoietin (Epo) or the ketone body acetoacetate (AcAc) were highly heterogenous. While both treatments suppressed global injury responses and oxidative stress, significant neuroprotection was only seen in a subset of regions, with others displaying no response or potential exacerbation of injury. Similar regional heterogeneity was seen in the morphology and response of microglia to injury and treatment, which mirrored those seen after injury in vivo. Within each region, machine-learning-based classification of microglia morphological shifts in response to injury predicted the neuroprotective response to each therapy, with different morphologies associated with different treatment responses. This suggests that the ferret OWH slice culture model provides a platform for examining regional responses to injury in the gyrencephalic brain, as well as for screening combinations of therapeutics to provide global neuroprotection after injury.

4.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35054800

ABSTRACT

Hypoxic-Ischemic Encephalopathy (HIE) in the brain is the leading cause of morbidity and mortality in neonates and can lead to irreparable tissue damage and cognition. Thus, investigating key mediators of the HI response to identify points of therapeutic intervention has significant clinical potential. Brain repair after HI requires highly coordinated injury responses mediated by cell-derived extracellular vesicles (EVs). Studies show that stem cell-derived EVs attenuate the injury response in ischemic models by releasing neuroprotective, neurogenic, and anti-inflammatory factors. In contrast to 2D cell cultures, we successfully isolated and characterized EVs from whole brain rat tissue (BEV) to study the therapeutic potential of endogenous EVs. We showed that BEVs decrease cytotoxicity in an ex vivo oxygen glucose deprivation (OGD) brain slice model of HI in a dose- and time-dependent manner. The minimum therapeutic dosage was determined to be 25 µg BEVs with a therapeutic application time window of 4-24 h post-injury. At this therapeutic dosage, BEV treatment increased anti-inflammatory cytokine expression. The morphology of microglia was also observed to shift from an amoeboid, inflammatory phenotype to a restorative, anti-inflammatory phenotype between 24-48 h of BEV exposure after OGD injury, indicating a shift in phenotype following BEV treatment. These results demonstrate the use of OWH brain slices to facilitate understanding of BEV activity and therapeutic potential in complex brain pathologies for treating neurological injury in neonates.


Subject(s)
Brain Ischemia/therapy , Brain/metabolism , Brain/pathology , Extracellular Vesicles/metabolism , Animals , Animals, Newborn , Biomarkers/metabolism , Cell Shape , Cell Survival , Extracellular Vesicles/ultrastructure , Female , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley
5.
AIChE J ; 67(12)2021 Dec.
Article in English | MEDLINE | ID: mdl-35399334

ABSTRACT

Translation of nanotherapeutics from preclinical research to clinical application is difficult due to the complex and dynamic interaction space between the nanotherapeutic and the brain environment. To improve translation, increased insight into nanoformulation-brain interactions in preclinical research is necessary. We developed a nanoformulation-brain database and wrote queries to connect the complex physical, chemical, and biological features of neurotherapeutics based on experimental data. We queried the database to select nanoformulations based on specific physical characteristics that enable effective penetration within the brain, including size, polydispersity index, and zeta potential. Additionally, we demonstrate the ability to query the database to return select nanoformulation characteristics, including nanoformulation methodology or methodological variables such as surfactant, polymer, drug loading, and sonication times. Finally, we show the capacity of our database to produce correlations relating nanoparticle formulation parameters to biological outcomes, including nanotherapeutic impact on cell viability in cultured brain slices.

6.
Curr Opin Chem Eng ; 30(12): 112-119, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304774

ABSTRACT

Neurological diseases account for a significant portion of the global disease burden. While research efforts have identified potential drugs or drug targets for neurological diseases, most therapeutic platforms are still ineffective at reaching the target location selectively and with high yield. Restricted transport, including passage across the blood-brain barrier, through the brain parenchyma, and into specific cells, is a major cause of ineffective therapeutic delivery. However, nanotechnology is a promising, tailorable platform for overcoming these transport barriers and improving therapeutic delivery to the brain. We provide a transport-oriented analysis of nanotechnology's ability to navigate these transport barriers in the brain. We also provide an opinion on the need for technology development for increasing our capacity to characterize and quantify nanoparticle passage through each transport barrier. Finally, we highlight the importance of incorporating the effect of disease, metabolic state, and regional dependencies to better understand transport of nanotherapeutics in the brain.

7.
Bioeng Transl Med ; 5(3): e10175, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33005740

ABSTRACT

Cerebral ischemia is a major cause of death in both neonates and adults, and currently has no cure. Nanotechnology represents one promising area of therapeutic development for cerebral ischemia due to the ability of nanoparticles to overcome biological barriers in the brain. ex vivo injury models have emerged as a high-throughput alternative that can recapitulate disease processes and enable nanoscale probing of the brain microenvironment. In this study, we used oxygen-glucose deprivation (OGD) to model ischemic injury and studied nanoparticle interaction with microglia, resident immune cells in the brain that are of increasing interest for therapeutic delivery. By measuring cell death and glutathione production, we evaluated the effect of OGD exposure time and treatment with azithromycin (AZ) on slice health. We found a robust injury response with 0.5 hr of OGD exposure and effective treatment after immediate application of AZ. We observed an OGD-induced shift in microglial morphology toward increased heterogeneity and circularity, and a decrease in microglial number, which was reversed after treatment. OGD enhanced diffusion of polystyrene-poly(ethylene glycol) (PS-PEG) nanoparticles, improving transport and ability to reach target cells. While microglial uptake of dendrimers or quantum dots (QDs) was not enhanced after injury, internalization of PS-PEG was significantly increased. For PS-PEG, AZ treatment restored microglial uptake to normal control levels. Our results suggest that different nanoparticle platforms should be carefully screened before application and upon doing so; disease-mediated changes in the brain microenvironment can be leveraged by nanoscale drug delivery devices for enhanced cell interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...