Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Orthop Rev (Pavia) ; 8(2): 6445, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27433303

ABSTRACT

Magnesium-based interference screws may be an alternative in anterior/posterior cruciate ligament reconstruction. The well-known osteoconductive effects of biodegradable magnesium alloys may be useful. It was the purpose of this study to evaluate the biomechanical properties of a magnesium based interference screw and compare it to a standard implant. A MgYREZr-alloy interference screw and a standard implant (Milagro®; De Puy Mitek, Raynham, MA, USA) were used for graft fixation. Specimens were placed into a tensile loading fixation of a servohydraulic testing machine. Biomechanical analysis included pretensioning of the constructs at 20 N for 1 min following cyclic pretensioning of 20 cycles between 20 and 60 N. Biomechanical elongation was evaluated with cyclic loading of 1000 cycles between 50 and 200 N at 0.5 Hz. Maximum load to failure was 511.3±66.5 N for the Milagro® screw and 529.0±63.3 N for magnesium-based screw (ns, P=0.57). Elongations after preload, during cyclical loading and during failure load were not different between the groups (ns, P>0.05). Stiffness was 121.1±13.8 N/mm for the magnesium-based screw and 144.1±18.4 for the Milagro® screw (ns, P=0.32). MgYREZr alloy interference screws show comparable results in biomechanical testing to standard implants and may be an alternative for anterior cruciate reconstruction in the future.

2.
Mater Sci Eng C Mater Biol Appl ; 59: 1100-1109, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26652469

ABSTRACT

The reconstruction of the anterior cruciate ligament is, for the most part, currently performed with interference screws made of titanium or degradable polymers. The aim of this study was to investigate the use of biodegradable magnesium interference screws for such a procedure because of their known biocompatibility and reported osteoconductive effects. The left tibiae of each of 18 rabbits were implanted with a magnesium-based (MgYREZr-alloy) screw, and another 18 with a titanium-based control. Each group was divided into observation periods of 4, 12 and 24weeks. After sacrifice, µCT scans were acquired to assess the amount of the gas liberated and the degradation rate of the implant. Histological evaluations were performed to investigate the local tissue response adjacent to the implant and to assess the status of the attachment between the tendon and the bone tissue. The µCT scans showed that liberation of gas was most prominent 4weeks after implantation and was significantly decreased by 24weeks. All screws remained in situ and formed a sufficient connection with the tendon and sufficient osseous integration at 24weeks. Histological evaluations showed neither inflammatory reactions nor necrosis of the tendon. The results of this pilot study in rabbits indicate that this magnesium-based interference screw should be considered as an alternative to conventional implant materials.


Subject(s)
Anterior Cruciate Ligament Reconstruction/instrumentation , Biocompatible Materials , Bone Screws , Magnesium , Animals , Anterior Cruciate Ligament/surgery , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Bone Remodeling/drug effects , Female , Magnesium/pharmacology , Magnesium/therapeutic use , Rabbits
3.
Knee Surg Sports Traumatol Arthrosc ; 24(12): 3976-3981, 2016 Dec.
Article in English | MEDLINE | ID: mdl-25246174

ABSTRACT

PURPOSE: Degradable magnesium implants have received increasing interest in recent years. In anterior cruciate ligament reconstruction surgery, the well-known osteoconductive effects of biodegradable magnesium alloys may be useful. The aim of this study was to examine whether interference screws made of MgYREZr have comparable biomechanical properties to commonly used biodegradable screws and whether a different thread on the magnesium screw has an influence on the fixation strength. METHODS: Five magnesium (MgYREZr-alloy) screws were tested per group. Three different groups with variable thread designs (Designs 1, 2, and 3) were produced and compared with the commercially available bioabsorbable Bioacryl rapid polylactic-co-glycolic acid screw Milagro®. In vitro testing was performed in synthetic bone using artificial ligament fixed by an interference screw. The constructs were pretensioned with a constant load of 60 N for 30 s followed by 500 cycles between 60 N and 250 N at 1 Hz. Construct displacements between the 1st and 20th and the 21st and 500th cycles were recorded. After a 30 s break, a maximum load to failure test was performed at 1 mm/s measuring the maximum pull-out force. RESULTS: The maximum loads to failure of all three types of magnesium interference screws (Design 1: 1,092 ± 133.7 N; Design 2: 1,014 ± 103.3 N; Design 3: 1,001 ± 124 N) were significantly larger than that of the bioabsorbable Milagro® interference screw (786.8 ± 62.5 N) (p < 0.05). However, the greatest maximum load was found with magnesium screw Design 1. Except for a significant difference between Designs 1 and 2, there were no further significant differences among the four groups in displacement after the 20th cycle. CONCLUSIONS: Biomechanical testing showed higher pull-out forces for magnesium compared with a commercial polymer screw. Hence, they suggest better stability and are a potential alternative. The thread geometry does not significantly influence the stability provided by the magnesium implants. This study shows the first promising results of a degradable material, which may be a clinical alternative in the future.


Subject(s)
Absorbable Implants , Alloys , Bone Screws , Magnesium , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Reconstruction/instrumentation , Biomechanical Phenomena , Humans , Lactic Acid , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer
4.
Acta Biomater ; 25: 369-83, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26188326

ABSTRACT

The biocompatibility and the degradation behavior of the LAE442 magnesium-based intramedullary interlocked nailing system (IM-NS) was assessed in vivo in a comparative study (stainless austenitic steel 1.4441LA) for the first time. IM-NS was implanted into the right tibia (24-week investigation period; nails/screws diameter: 9 mm/3.5 mm, length: 130 mm/15-40 mm) of 10 adult sheep (LAE442, stainless steel, n=5 each group). Clinical and radiographic examinations, in vivo computed tomography (CT), ex vivo micro-computed tomography (µCT), mechanical and histological examinations and element analyses of alloying elements in inner organs were performed. The mechanical examinations (four-point bending) revealed a significant decrease of LAE442 implant stiffness, force at 0.2% offset yield point and maximum force. Periosteal (new bone formation) and endosteal (bone decline) located bone alterations occurred in both groups (LAE442 alloy more pronounced). Moderate gas formation was observed within the LAE442 alloy group. The CT-measured implant volume decreased slightly (not significant). Histologically a predominantly direct bone-to-implant interface existed within the LAE442 alloy group. Formation of a fibrous tissue capsule around the nail occurred in the steel group. Minor inflammatory infiltration was observed in the LAE442 alloy group. Significantly increased quantities of rare earth elements were detected in the LAE442 alloy group. µCT examination showed the beginning of corrosion in dependence of the surrounding tissue. After 24 weeks the local biocompatibility of LAE442 can be considered as suitable for a degradable implant material. STATEMENT OF SIGNIFICANCE: An application oriented interlocked intramedullary nailing system in a comparative study (degradable magnesium-based LAE442 alloy vs. steel alloy) was examined in a sheep model for the first time. We focused in particular on the examination of implant degradation by means of (µ-)CT, mechanical properties (four-point bending), clinical compatibility, local bone reactions (X-ray and histology) and possible systemic toxicity (histology and element analyses of inner organs). A significant decrease of magnesium (LAE442 alloy) implant stiffness and maximum force occurred. Moderate not clinically relevant gas accumulation was determined. A predominantly direct bone-to-implant contact existed within the magnesium (LAE442 alloy) group compared to an indirect contact in the steel group. Rare earth element accumulation could be observed in inner organs but H&E staining was inconspicuous.


Subject(s)
Fracture Fixation, Intramedullary , Magnesium/pharmacology , Materials Testing , Alloys/pharmacology , Animals , Disease Models, Animal , Female , Implants, Experimental , Sheep , Tibia/diagnostic imaging , Tibia/drug effects , Tibia/pathology , Tomography, X-Ray Computed
5.
J Biomater Appl ; 29(2): 291-302, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24522242

ABSTRACT

Degradable magnesium alloys are promising biomaterials for orthopedic applications. The aim of this study was to evaluate the potential effects on both the synovial membrane (synovialis) and the synovial fluid (synovia) of the degradation products of a MgYREZr-pin implanted in the intercondylar femoral notch in a rabbit model. Thirty-six animals were randomized into two groups (MgYREZr or Ti6Al4V alloy) of 18 animals each. Each group was then divided into three subgroups with implantation periods of 1, 4, and 12 weeks, with six animals in each subgroup. The initial inflammatory reaction caused by the surgical trauma declined after 12 weeks of implantation, and elucidated a progressive recovery of the synovial membrane. Compared with control Ti6Al4V pins, there were no significant differences between the groups. However, after 12 weeks, recovery of the synovial membrane was more advanced in the titanium group, in which 92% showed no signs of synovitis, than in the magnesium group. A cytotoxicity test with L929 cells and human osteoblasts (HOB) was also conducted, according to EN ISO 10993-5/12, and no toxic leachable products were observed after 24 h of incubation. In conclusion, the MgYREZr alloy seems to be a suitable material for intra-articular degradable implants.

6.
J Biomater Appl ; 28(8): 1264-73, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24105427

ABSTRACT

In this in vitro study, magnesium plates of ZEK100 and MgCa0.8 alloy similar to common titanium alloy osteosynthesis plates were investigated as degradable biomedical materials with a focus on primary stability. Immersion tests were performed in Hank's Balanced Salt Solution at 37. The bending strength of the samples was determined using the four-point bending test according to ISO 9585:1990. The initial strength of the noncorroded ZEK100 plate was 11% greater than that of the MgCa0.8 plate; both were approximately 65% weaker than a titanium plate. The bending strength was determined after 48 and 96 h of immersion in Hank's Balanced Salt Solution; both magnesium alloys decreased by approximately 7% after immersion for 96 h. The degradation rate and the Mg(2+) release of ZEK100 were lower than those of MgCa0.8. Strong pitting and filiform corrosion were observed in the MgCa0.8 samples after 96 h of immersion. The surface of the ZEK100 plates exhibited only small areas of filiform corrosion. The results of this in vitro study indicate that the ZEK100 alloy may be more suitable for biomedical applications.


Subject(s)
Alloys , Biocompatible Materials , Bone Plates , Magnesium , Biomechanical Phenomena , Calcium , Corrosion , Fracture Fixation, Internal/instrumentation , Humans , Materials Testing , Microscopy, Electron, Scanning , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...