Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Proc SPIE Int Soc Opt Eng ; 97882016 Feb 27.
Article in English | MEDLINE | ID: mdl-27330240

ABSTRACT

It is now common for magnetic-resonance-imaging (MRI) based multi-site trials to include diffusion-weighted imaging (DWI) as part of the protocol. It is also common for these sites to possess MR scanners of different manufacturers, different software and hardware, and different software licenses. These differences mean that scanners may not be able to acquire data with the same number of gradient amplitude values and number of available gradient directions. Variability can also occur in achievable b-values and minimum echo times. The challenge of a multi-site study then, is to create a common protocol by understanding and then minimizing the effects of scanner variability and identifying reliable and accurate diffusion metrics. This study describes the effect of site, scanner vendor, field strength, and TE on two diffusion metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA) using two common analyses (region-of-interest and mean-bin value of whole brain histograms). The goal of the study was to identify sources of variability in diffusion-sensitized imaging and their influence on commonly reported metrics. The results demonstrate that the site, vendor, field strength, and echo time all contribute to variability in FA and MD, though to different extent. We conclude that characterization of the variability of DTI metrics due to site, vendor, field strength, and echo time is a worthwhile step in the construction of multi-center trials.

2.
Proc SPIE Int Soc Opt Eng ; 97882016 Feb 27.
Article in English | MEDLINE | ID: mdl-27350723

ABSTRACT

MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables.

3.
Neuroimage ; 82: 647-61, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23727024

ABSTRACT

Data sharing efforts increasingly contribute to the acceleration of scientific discovery. Neuroimaging data is accumulating in distributed domain-specific databases and there is currently no integrated access mechanism nor an accepted format for the critically important meta-data that is necessary for making use of the combined, available neuroimaging data. In this manuscript, we present work from the Derived Data Working Group, an open-access group sponsored by the Biomedical Informatics Research Network (BIRN) and the International Neuroimaging Coordinating Facility (INCF) focused on practical tools for distributed access to neuroimaging data. The working group develops models and tools facilitating the structured interchange of neuroimaging meta-data and is making progress towards a unified set of tools for such data and meta-data exchange. We report on the key components required for integrated access to raw and derived neuroimaging data as well as associated meta-data and provenance across neuroimaging resources. The components include (1) a structured terminology that provides semantic context to data, (2) a formal data model for neuroimaging with robust tracking of data provenance, (3) a web service-based application programming interface (API) that provides a consistent mechanism to access and query the data model, and (4) a provenance library that can be used for the extraction of provenance data by image analysts and imaging software developers. We believe that the framework and set of tools outlined in this manuscript have great potential for solving many of the issues the neuroimaging community faces when sharing raw and derived neuroimaging data across the various existing database systems for the purpose of accelerating scientific discovery.


Subject(s)
Database Management Systems/organization & administration , Database Management Systems/standards , Informatics/standards , Information Dissemination/methods , Neuroimaging/methods , Databases, Factual/standards , Humans , Informatics/methods , Informatics/trends , Internet , Neuroimaging/standards
4.
Brain Imaging Behav ; 6(2): 137-92, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22438191

ABSTRACT

Mild traumatic brain injury (mTBI), also referred to as concussion, remains a controversial diagnosis because the brain often appears quite normal on conventional computed tomography (CT) and magnetic resonance imaging (MRI) scans. Such conventional tools, however, do not adequately depict brain injury in mTBI because they are not sensitive to detecting diffuse axonal injuries (DAI), also described as traumatic axonal injuries (TAI), the major brain injuries in mTBI. Furthermore, for the 15 to 30 % of those diagnosed with mTBI on the basis of cognitive and clinical symptoms, i.e., the "miserable minority," the cognitive and physical symptoms do not resolve following the first 3 months post-injury. Instead, they persist, and in some cases lead to long-term disability. The explanation given for these chronic symptoms, i.e., postconcussive syndrome, particularly in cases where there is no discernible radiological evidence for brain injury, has led some to posit a psychogenic origin. Such attributions are made all the easier since both posttraumatic stress disorder (PTSD) and depression are frequently co-morbid with mTBI. The challenge is thus to use neuroimaging tools that are sensitive to DAI/TAI, such as diffusion tensor imaging (DTI), in order to detect brain injuries in mTBI. Of note here, recent advances in neuroimaging techniques, such as DTI, make it possible to characterize better extant brain abnormalities in mTBI. These advances may lead to the development of biomarkers of injury, as well as to staging of reorganization and reversal of white matter changes following injury, and to the ability to track and to characterize changes in brain injury over time. Such tools will likely be used in future research to evaluate treatment efficacy, given their enhanced sensitivity to alterations in the brain. In this article we review the incidence of mTBI and the importance of characterizing this patient population using objective radiological measures. Evidence is presented for detecting brain abnormalities in mTBI based on studies that use advanced neuroimaging techniques. Taken together, these findings suggest that more sensitive neuroimaging tools improve the detection of brain abnormalities (i.e., diagnosis) in mTBI. These tools will likely also provide important information relevant to outcome (prognosis), as well as play an important role in longitudinal studies that are needed to understand the dynamic nature of brain injury in mTBI. Additionally, summary tables of MRI and DTI findings are included. We believe that the enhanced sensitivity of newer and more advanced neuroimaging techniques for identifying areas of brain damage in mTBI will be important for documenting the biological basis of postconcussive symptoms, which are likely associated with subtle brain alterations, alterations that have heretofore gone undetected due to the lack of sensitivity of earlier neuroimaging techniques. Nonetheless, it is noteworthy to point out that detecting brain abnormalities in mTBI does not mean that other disorders of a more psychogenic origin are not co-morbid with mTBI and equally important to treat. They arguably are. The controversy of psychogenic versus physiogenic, however, is not productive because the psychogenic view does not carefully consider the limitations of conventional neuroimaging techniques in detecting subtle brain injuries in mTBI, and the physiogenic view does not carefully consider the fact that PTSD and depression, and other co-morbid conditions, may be present in those suffering from mTBI. Finally, we end with a discussion of future directions in research that will lead to the improved care of patients diagnosed with mTBI.


Subject(s)
Brain Diseases/diagnosis , Brain Diseases/etiology , Brain Injuries/complications , Brain Injuries/diagnosis , Brain/pathology , Magnetic Resonance Imaging/methods , Humans
5.
Neuroimage ; 60(2): 1006-14, 2012 Apr 02.
Article in English | MEDLINE | ID: mdl-22270354

ABSTRACT

Ultra-high field MRI (≥ 7 T) has recently shown great sensitivity to depict patterns of tissue microarchitecture. Moreover, recent studies have demonstrated a dependency between T2* and orientation of white matter fibers with respect to the main magnetic field B0. In this study we probed the potential of T2* mapping at 7 T to provide new markers of cortical architecture. We acquired multi-echo measurements at 7 T and mapped T2* over the entire cortex of eight healthy individuals using surface-based analysis. B0 dependence was tested by computing the angle θ(z) between the normal of the surface and the direction of B0, then fitting T2*(θ(z)) using model from the literature. Average T2* in the cortex was 32.20 +/- 1.35 ms. Patterns of lower T2* were detected in the sensorimotor, visual and auditory cortices, likely reflecting higher myelin content. Significantly lower T2* was detected in the left hemisphere of the auditory region (p<0.005), suggesting higher myelin content, in accordance with previous investigations. B0 orientation dependence was detected in some areas of the cortex, the strongest being in the primary motor cortex (∆R2*=4.10 Hz). This study demonstrates that quantitative T2* measures at 7 T MRI can reveal patterns of cytoarchitectural organization of the human cortex in vivo and that B0 orientation dependence can probe the coherency and orientation of gray matter fibers in the cortex, shedding light into the potential use of this type of contrast to characterize cyto-/myeloarchitecture and to understand the pathophysiology of diseases associated with changes in iron and/or myelin concentration.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/anatomy & histology , Magnetic Resonance Imaging/methods , Adult , Cerebral Cortex/cytology , Humans
6.
Eur Surg Res ; 40(2): 184-9, 2008.
Article in English | MEDLINE | ID: mdl-17998777

ABSTRACT

The prognosis and care of critically ill ICU patients has improved over recent years, but the development of multiple organ failure (MOF) continues to cause significant morbidity and mortality. Shock, with resultant organ ischemia, appears to play a critical role in the development of MOF. It is our global hypothesis that MOF is a gut-derived phenomenon and that novel interventions can improve outcome in shock-induced gut inflammation and dysfunction in critically ill patients. We have found that the anesthetic agent ketamine has a profound impact on the response to endotoxic shock. This review summarizes our findings on the mechanisms of action by which ketamine is able to modulate the nitric oxide, cyclo-oxygenase and heme-oxygenase enzyme systems to attenuate endotoxin-induced organ dysfunction.


Subject(s)
Gastrointestinal Tract/enzymology , Infections/complications , Multiple Organ Failure/etiology , Multiple Organ Failure/prevention & control , Systemic Inflammatory Response Syndrome/complications , Anesthetics, Dissociative/pharmacology , Animals , Heme Oxygenase (Decyclizing)/metabolism , Infections/enzymology , Ketamine/pharmacology , Lipopolysaccharides/pharmacology , Multiple Organ Failure/chemically induced , Nitric Oxide Synthase/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Systemic Inflammatory Response Syndrome/enzymology
7.
J Biomech Eng ; 128(5): 733-41, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16995760

ABSTRACT

Rabbit Achilles tendons (N = 8) were subjected to tensile loading while internal water movements were followed using NMR. The distribution of the internal water in tendons was measured using a one-dimensional proton-density map that was collected along a radial line oriented transverse to the tendon's long axis. The proton density map was created from fits to T2 relaxation data. The experimental design included two cycles of loading (7.5 N tensile load) and relaxation. The first load application was for 42.67 min: unloaded for 21.33 min, reloaded for 21.33 min, and then unloaded for 21.33 min. Water was redistributed in a time-dependent fashion upon loading: proton density decreased in the core region and increased in the rim region. In addition there was evidence that tensile loading caused water to become NMR visible. In separate, parallel experiments, we studied the mechanical behavior of tendons using identical conditions of uniaxial loading (N = 7). The time constants of water movements were very different from the time constants of mechanical relaxation, indicating that water redistribution is not the sole determining factor of mechanical behavior.


Subject(s)
Achilles Tendon/physiology , Body Water/physiology , Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Spectroscopy/methods , Physical Stimulation/methods , Weight-Bearing/physiology , Animals , Biological Transport, Active/physiology , In Vitro Techniques , Male , Rabbits , Stress, Mechanical , Tensile Strength
8.
Magn Reson Med ; 53(3): 535-44, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15723394

ABSTRACT

Tendons exhibit viscoelastic mechanical behavior under tensile loading. The elasticity arises from the collagen chains that form fibrils, while the viscous response arises from the interaction of the water with the solid matrix. Therefore, an understanding of the behavior of water in response to the application of a load is crucial to the understanding of the origin of the viscous response. Three-dimensional MRI mapping of rabbit Achilles tendons was performed at 2.0 T to characterize the response of T(1) and T(2) relaxation times and the apparent diffusion coefficient (ADC) of water to tensile loading. The ADC was measured in directions both parallel (ADC( parallel)) and perpendicular (ADC( perpendicular)) to the long axis of the tendon. At a short diffusion time (5.8 ms) MR parameter maps showed the existence of two regions, here termed "core" and "rim", that exhibited statistically significant differences in T(1), T(2), and ADC( perpendicular) under the baseline loading condition. MR parameter maps were also generated at a second loading condition of approximately 1 MPa. At a diffusion time of 5.8 ms, there was a statistically significant increase in the rim region for both ADC( perpendicular) (57.5%) and ADC( parallel) (20.5%) upon tensile loading. The changes in core ADC(( perpendicular), ( parallel)), as well as the relaxation parameters in both core and rim regions, were not statistically significant. The effect of diffusion time on the ADC(( perpendicular), ( parallel)) values was investigated by creating maps at three additional diffusion times (50.0, 125.0, 250.0 ms) using a diffusion-weighted, stimulated-echo (DW-STE) pulse sequence. At longer diffusion times, ADC(( perpendicular), ( parallel)) values increased rather than approaching a constant value. This observation was attributed to T(1) spin-editing during the DW-STE pulse sequence, which resulted in the loss of short-T(1) components (with correspondingly lower ADCs) at longer diffusion times (corroborating the results from earlier spectroscopic work). The T(1) spin-editing effect was observed both in the core and in the rim regions of the tendon and hence was not solely due to the redistribution of water from the core to the rim upon loading. A measure reflective of the regional change in proton density was noted to be consistent with tensile-load-induced water transport from the central to the peripheral tendon region.


Subject(s)
Achilles Tendon/anatomy & histology , Body Water/metabolism , Diffusion Magnetic Resonance Imaging , Achilles Tendon/metabolism , Animals , Image Processing, Computer-Assisted , In Vitro Techniques , Rabbits , Signal Processing, Computer-Assisted , Tensile Strength
9.
J Magn Reson ; 170(1): 49-55, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15324757

ABSTRACT

The water apparent diffusion coefficient (ADC) in rabbit Achilles tendon is anisotropic, diffusion-time dependent, and changes as a function of tensile load. Water ADC changes of tendon under mechanical load are thought to be due to the extrusion of water from the more restricted tendon core to a relatively unrestricted bulk phase at the periphery (rim) of the tendon. Tensile loading may influence water ADC values by changing the spatial separation of restricting barriers (e.g., increasing the tendon fibril packing density). To explore this issue, we have applied porous-media theory to the investigation of water ADC changes in rabbit Achilles tendon under two different mechanical loading conditions (a baseline condition with a minimal tensile stress and a second in which the tensile stress was approximately 1 MPa). Diffusion sensitivity was applied in directions parallel and perpendicular to the long axis of the tendon. The short diffusion-time behavior of the resulting time-dependent ADC curves was used to indirectly infer information regarding the average surface area to volume ratio of the space available for molecular diffusion. From these values, we estimated a 40% reduction in volume available for diffusion in the perpendicular direction after tensile loading, but only a 10% reduction in the parallel direction. These differences are consistent with the known geometry of the tendon microstructure and suggest an increase in fibril packing density upon loading. The long diffusion-time behavior of the time-dependent ADC curves was used to indirectly infer the tortuosity of the diffusion pathways through the interstitial space. The tortuosity in the direction perpendicular to the tendon long axis was approximately 2.5 times greater than that in the parallel direction. Stimulated-echo measurement of the ADC values at longer diffusion times resulted in T1 spin editing of water with shorter T1 values (and correspondingly lower ADC values). The resulting increase in water ADC with increasing diffusion time was attributed to multiple components arising from the (overlapping) distribution of T1 values in the core and rim regions of the tendon.


Subject(s)
Achilles Tendon/physiology , Body Water/metabolism , Magnetic Resonance Spectroscopy/methods , Animals , Anisotropy , Diffusion , Rabbits , Tensile Strength/physiology
10.
J Biomech Eng ; 126(5): 651-6, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15648818

ABSTRACT

The redistribution of water in response to static tensile loading was investigated in rabbit Achilles tendons in vitro. The distribution of water was measured along a radially oriented line, using a one-dimensional proton-density map created from fits to diffusion-weighted magnetic resonance (MR) data. Water movements were measured during application of tensile loads of 5N (N=7) and 10N (N=6). Water distribution along the line was measured before loading and up to 42 min after load application. Static loading with either 5 or 10N loads caused a steady increase in proton density in the outside edge (rim) of the tendon. The 10N load lowered the proton density in the core of the tendon, but did so in a single step that was observed when the load was applied. The 5N load caused no change in proton density in the core region. The immediate redistribution from the core was statistically significant for the 10N load, but not the 5N load application. Statistically significant within-group proton-density increases were observed in the rim after 42 min postload for all tendons irrespective of load condition. The rate of proton-density postload increase at the rim region did not depend upon load. The rate for the 5N load case was 0.010 +/- 0.002 min(-1) and 0.007 +/- 0.002 min(-1) in the 10N case. Thus, while generally consistent with an extrusion model, the data show other features that argue for a more complex model.


Subject(s)
Achilles Tendon/chemistry , Achilles Tendon/physiology , Body Water/chemistry , Body Water/physiology , Animals , Diffusion , In Vitro Techniques , Physical Stimulation/methods , Rabbits , Stress, Mechanical , Tensile Strength/physiology , Tissue Distribution
11.
J Magn Reson Imaging ; 12(6): 842-58, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11105022

ABSTRACT

A major difficulty in staging and predicting ischemic brain injury by magnetic resonance (MR) imaging is the time-varying nature of the MR parameters within the ischemic lesion. A new multispectral (MS) approach is described to characterize cerebral ischemia in a time-independent fashion. MS analysis of five MR parameters (mean diffusivity, diffusion anisotropy, T2, proton density, and perfusion) was employed to characterize the progression of ischemic lesion in the rat brain following 60 minutes of transient focal ischemia. k-Means (KM) and fuzzy c-means (FCM) classification methods were employed to define the acute and subacute ischemic lesion. KM produced an estimate of lesion volume that was highly correlated with postmortem infarct volume, independent of the age of the lesion. Overall classification rates for KM exceeded FCM at acute and subacute time points as follows: KM, 90.5%, 94.4%, and 95. 9%; FCM, 82.4%, 90.6%, and 82.6% (for 45 minutes, 180 minutes, and 24-120 hours post MCAO groups). MS analysis also offers a formal method of combining diffusion and perfusion parameters to provide an estimate of the ischemic penumbra (KM classification rate = 70.3%). J. Magn. Reson. Imaging 2000;12:842-858.


Subject(s)
Cerebral Infarction/diagnosis , Image Processing, Computer-Assisted , Ischemic Attack, Transient/diagnosis , Magnetic Resonance Imaging , Acute Disease , Animals , Brain/pathology , Cerebral Infarction/pathology , Infarction, Middle Cerebral Artery/diagnosis , Infarction, Middle Cerebral Artery/pathology , Ischemic Attack, Transient/pathology , Male , Rats , Rats, Sprague-Dawley
12.
Ann Neurol ; 48(2): 236-44, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10939575

ABSTRACT

This study was designed to characterize the initial and secondary changes of the apparent diffusion coefficient (ADC) of water with high temporal resolution measurements of ADC values and to correlate ADC changes with functional outcomes. Fourteen rats underwent 30 minutes of temporary middle cerebral artery occlusion (MCAO). Diffusion-, perfusion-, and T2-weighted imaging was performed during MCAO and every 30 minutes for a total of 12 hours after reperfusion (n = 6). Neurological outcomes were evaluated during MCAO, every 30 minutes for a total of 6 hours and at 24 hours after reperfusion (n = 8). The decreased cerebral blood flow during MCAO returned to normal after reperfusion and remained unchanged thereafter. The decreased ADC values during occlusion completely recovered at 1 hour after reperfusion. The renormalized ADC values started to decrease secondarily at 2.5 hours, accompanied by a delayed increase in T2 values. The ADC-defined secondary lesion grew over time and was 52% of the ADC-defined initial lesion at 12 hours. Histological evaluation demonstrated neuronal damage in the regions of secondary ADC decline. Complete resolution of neurological deficits was seen in 1 rat at 1 hour and in 6 rats between 2.5 and 6 hours after reperfusion; no secondary neurological deficits were observed at 24 hours. These data suggest that (1) a secondary ADC reduction occurs as early as 2.5 hours after reperfusion, evolves in a slow fashion, and is associated with neuronal injury; and (2) renormalization and secondary decline in ADC are not associated with neurological recovery and worsening, respectively.


Subject(s)
Brain/physiopathology , Cerebrovascular Circulation/physiology , Hypoxia-Ischemia, Brain/physiopathology , Reperfusion Injury/physiopathology , Animals , Brain/blood supply , Brain/pathology , Hypoxia-Ischemia, Brain/pathology , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley , Reperfusion Injury/pathology , Time Factors
13.
J Magn Reson ; 144(2): 217-27, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10828190

ABSTRACT

Water diffusion measurements were performed on rabbit Achilles tendons during static tensile loading and tendons in an unloaded state. The apparent diffusion coefficient (ADC) was measured along two directions: parallel and perpendicular to the long axis of the tendon. Tendons were studied after being prepared in two ways: (a) after being stored frozen in phosphate-buffered saline (PBS) and (b) freshly isolated. Statistically significant directional anisotropy was observed in the ADC in all tendons. The ADC was significantly greater in the direction parallel to the long axis of the tendon than in the perpendicular direction. The anisotropy is attributed to the greater restrictions seen by the water molecules in the perpendicular direction and is consistent with the known geometry of the tendon. Storage in PBS caused tendons to swell. This increased the ADC measured along both directions and reduced the anisotropy. The existence of anisotropy in the ADC was not related to the orientation of the specimen in the magnet. The ADC increased along both directions following the application of a 5-N tensile load; the increase was greatest along the perpendicular axis of the tendon. In order to determine whether load-related changes in the ADC reflected changes in interfibrilar spacing, we used electron microscopy to measure load-related changes in fibril spacing. Load-related changes in fiber spacing could not account for the observed changes in the ADC. The increase in ADC caused by loading was attributed to the extrusion of tendon water into a bulk phase along the outside surface of the tendon. In PBS-stored samples, enough fluid was extruded that it could be visualized. The transient response of the ADC to a 5-N tensile load was also studied. The absolute ADC in both directions increased with loading and recovered to baseline upon unloading. The transient changes in ADC, for both loading and unloading, had a mean time constant of approximately 15 min. The magnitude of the load-induced transient ADC changes was comparable to that seen in the static-loading experiments.


Subject(s)
Achilles Tendon/physiology , Body Water/metabolism , Magnetic Resonance Spectroscopy/methods , Achilles Tendon/ultrastructure , Animals , Biological Transport , Diffusion , Female , Male , Rabbits , Tensile Strength/physiology
14.
J Magn Reson Imaging ; 8(6): 1266-78, 1998.
Article in English | MEDLINE | ID: mdl-9848739

ABSTRACT

Multispectral (MS) analysis was used to determine the ischemic lesion volume in the rat brain after permanent middle cerebral arterial occlusion. MS analysis used a four-dimensional MS model consisting of an estimate of the average apparent diffusion coefficient of water (ADC(av)), T2, proton density, and perfusion. Four classification methods were investigated: (a) multivariate gaussian (MVG); (b) k-nearest neighbor (k-NN); (c) k-means (KM); and (d) fuzzy c-means (FCM). MVG and k-NN classifiers are supervised methods requiring labeled training data to characterize the stroke lesion. Unsupervised classifiers (KM, FCM) do not require previous statistics or labeled training data, resulting in potentially greater clinical usefulness. All MS methods provided significant correlation with postmortem findings beyond the use of ADC(av) alone (partial correlation given the ADC(av) estimate: MVG, .66; k-NN, .75; KM, .68; FCM, .70). This study demonstrates that MS analysis provides an improved estimate of ischemic lesion volume over that obtained from ADC alone.


Subject(s)
Brain Ischemia/diagnosis , Brain/pathology , Magnetic Resonance Spectroscopy , Algorithms , Animals , Brain/blood supply , Disease Models, Animal , Echo-Planar Imaging , Image Processing, Computer-Assisted , Male , Rats , Rats, Sprague-Dawley
15.
Magn Reson Imaging ; 16(5-6): 535-9, 1998.
Article in English | MEDLINE | ID: mdl-9803904

ABSTRACT

The decay of the Hahn spin echo of water in the pore space of many porous media is dominated by the dephasing of spins in internal-field inhomogeneities, produced by susceptibility contrasts, rather than surface or bulk relaxation. This is particularly the case for measurements at moderate and high fields in samples such as fluid-saturated sedimentary rocks and some biological materials. Here, we study the behavior of the Hahn-echo decay in rocks with grains much larger and smaller than the average dephasing length, which is typically of the order of a few microns. It is shown that the decay in these two cases is qualitatively different. For coarse-grained rocks, the decay can be modeled to first order by a distribution of local, effective field gradients. This is in contrast to the case of fine-grained rocks, where motional narrowing of the field inhomogeneities occurs. These interpretations are supported by measurements of the temperature dependence of the Hahn echo decay and the diffusion time dependence of the diffusion coefficient.


Subject(s)
Geologic Sediments , Magnetic Resonance Spectroscopy , Diffusion , Porosity
16.
NMR Biomed ; 11(3): 120-30, 1998 May.
Article in English | MEDLINE | ID: mdl-9699495

ABSTRACT

Water diffusion-coefficient mapping was used in conjunction with 19F inversion-recovery echo-planar imaging (IR-EPI) of a sequestered perfluorocarbon (PFC) emulsion to investigate the spatial correlation between the diffusion coefficient of water and the tissue oxygen tension (pO2) in radiation-induced fibrosarcoma (RIF-1) tumors (n = 11). The diffusion-time-dependent apparent diffusion coefficient, D(t), was determined by acquiring diffusion coefficient maps at 20 different diffusion times. Maps at four representative time points in different regions of the D(t) curve were selected for final analysis. An intravenously administered PFC emulsion, perfluoro-15-crown-5-ether, was used to generate the PO2 maps. D(t) and PO2 data were acquired with the animal breathing either air or carbogen (95% O2 - 5% CO2) to investigate the effects of increased tumor pO2 on D(t). The average increase in tumor pO2 was 22 torr when the breathing gas was changed from air to carbogen. Correlation plots generated from pixel data for D(t) (air breathing) vs D(t) (carbogen breathing) show little deviation from a slope of unity. Correlation plots of D(t) vs PO2 indicate that no correlation is present between these two parameters. This study also confirmed that necrotic tissue was best differentiated from viable tumor tissue based on D(t) maps at long diffusion times.


Subject(s)
Fibrosarcoma/metabolism , Neoplasms, Radiation-Induced/metabolism , Oxygen/metabolism , Water/metabolism , Animals , Carbon Dioxide/administration & dosage , Diffusion , Fluorine , Linear Models , Magnetic Resonance Spectroscopy/methods , Mice , Mice, Inbred C3H , Neoplasm Transplantation , Oxygen/administration & dosage , Partial Pressure , Radiation Tolerance
17.
Fold Des ; 2(2): 89-92, 1997.
Article in English | MEDLINE | ID: mdl-9135980

ABSTRACT

BACKGROUND: Combinatorial methods based on binary patterning of polar and nonpolar residues have been used to generate large libraries of de novo alpha-helical proteins. Within such libraries, the ability to find structures that resemble natural proteins requires a rapid method to sort through large collections of proteins and detect those possessing 'native-like' features. The current paper presents such a method and applies it to an initial collection of de novo proteins. RESULTS: We present a method to identify proteins with native-like properties from libraries of de novo sequences expressed in vivo. A novel 'rapid prep' freeze/thaw procedure was used to prepare samples; chromatographic purification was not required. The semi-crude samples were analyzed for native-like features by one-dimensional 1H NMR spectroscopy. Using this method, we demonstrate that native-like features can readily be observed for several proteins among a collection of sequences designed by binary patterning of polar and nonpolar amino acids. CONCLUSIONS: Native-like properties can be detected using a method that requires neither isotopic enrichment nor chromatographic purification. The method is inexpensive, rapid, and suitable for parallel processing. It can therefore be employed to screen for native-like properties among large collections of de novo sequences. Using this method, we demonstrate that although the binary code strategy does not explicitly design tertiary packing, it can nonetheless generate proteins that possess native-like properties. The use of combinatorial methods to produce large collections of proteins coupled with the availability of a rapid assay for detecting native-like properties will facilitate the design and isolation of novel proteins with desirable properties.


Subject(s)
Protein Conformation , Protein Engineering/methods , Recombinant Proteins/chemistry , Chromatography , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Magnetic Resonance Spectroscopy
18.
Ann Neurol ; 39(3): 308-18, 1996 Mar.
Article in English | MEDLINE | ID: mdl-8602749

ABSTRACT

This study investigated the role of spontaneous and induced spreading depression (SD) on the evolution of focal ischemia in vivo. We induced focal ischemia in 12 rats using the middle cerebral artery suture occlusion (MCAO) method. Chemical stimulation of nonischemic ipsilateral cortex by potassium chloride application (KCl group; n = 7) and saline (NaCl group; n = 5) was performed at 15, 30, 45, and 60 minutes following MCAO, and SD was detected electrophysiologically. Ischemic lesion volumes assessed over 15-minute intervals, evaluated by continuous apparent diffusion coefficient (ADC) of water mapping, demonstrated that the ischemic region increased significantly during 15-minute time epochs with a single SD episode (36.5 +/- 12.9 mm3, mean +/- SD) or multiple SD episodes (39.8 +/- 22.3) compared with those without SD (13.9 +/- 11.5) (p = 0.0009). Infarct volume at postmortem 24 hours after MCAO was significantly larger in the KCl group, with more total SDs (237.8 +/- 13.8) than the NaCl group (190.5 +/- 12.6) (p = 0.0001). This study demonstrates that ischemia-related and induced SDs increase significantly ischemic lesion volume in vivo, supporting the hypothesis for a causative role of SD in extending focal ischemic injury.


Subject(s)
Brain Ischemia/physiopathology , Cerebral Arteries/physiopathology , Cortical Spreading Depression/physiology , Animals , Brain Ischemia/diagnosis , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley , Stroke Volume , Time Factors
19.
NMR Biomed ; 8(7-8): 297-306, 1995.
Article in English | MEDLINE | ID: mdl-8739268

ABSTRACT

Recent developments in solid-boundary porous-media theory have shown that useful structural information can be extracted from the time-dependent diffusion coefficient, D(t), of the fluid filling the interstitial space. This theoretical framework provides a basis from which to understand the results from diffusion experiments performed in other types of systems (e.g. biological). Structural information about porous media can be obtained from the short-time behavior of D(t) in the form of the ratio of the surface area to pore volume, S/V. The long-time behavior of D(t) in porous media provides an indirect measure of the macroscopic structure. In this case, the long-time diffusion coefficient, D(eff), reflects the tortuosity, T, of the medium; a property of both the connectivity of the diffusion paths and the volume fraction of the sample. Measurements of D(t) were performed in RIF-1 tumors, using both spectroscopy and imaging, and the data were used to calculate S/V and T. The results were compared with histological sections in order to correlate S/V and T with differences in tissue structure (i.e. necrotic vs non-necrotic tumor tissue). Based on spectroscopic measurements, there is a trend towards decreasing S/V and T with increasing tumor volume, consistent with the interpretation that water in necrotic tissue is experiencing relatively fewer restricting barriers (as compared to non-necrotic tumor tissue). Based on D(t) maps generated from RIF-1 tumors, D(eff), and hence T appears to be much more sensitive than S/V in differentiating between necrotic and non-necrotic tissue. In addition to characterizing diseased tissue, S/V and particularly T appear to be sensitive to structural changes that would accompany tumor treatment and should therefore provide a useful tool for monitoring the progress of therapeutic interventions.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Models, Biological , Animals , Diffusion , Fibrosarcoma/pathology , Mathematics , Mice , Mice, Inbred C3H , Necrosis , Neoplasms, Experimental/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...