Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 12(2): 484-501, 2022 02.
Article in English | MEDLINE | ID: mdl-34548310

ABSTRACT

Cancer-associated fibroblast (CAF) heterogeneity is increasingly appreciated, but the origins and functions of distinct CAF subtypes remain poorly understood. The abundant and transcriptionally diverse CAF population in pancreatic ductal adenocarcinoma (PDAC) is thought to arise from a common cell of origin, pancreatic stellate cells (PSC), with diversification resulting from cytokine and growth factor gradients within the tumor microenvironment. Here we analyzed the differentiation and function of PSCs during tumor progression in vivo. Contrary to expectations, we found that PSCs give rise to a numerically minor subset of PDAC CAFs. Targeted ablation of PSC-derived CAFs within their host tissue revealed nonredundant functions for this defined CAF population in shaping the PDAC microenvironment, including production of specific extracellular matrix components and tissue stiffness regulation. Together, these findings link stromal evolution from distinct cells of origin to transcriptional heterogeneity among PDAC CAFs and demonstrate unique functions for CAFs of a defined cellular origin. SIGNIFICANCE: By tracking and ablating a specific CAF population, we find that a numerically minor CAF subtype from a defined cell of origin plays unique roles in establishing the pancreatic tumor microenvironment. Together with prior studies, this work suggests that mesenchymal lineage heterogeneity and signaling gradients diversify PDAC CAFs.See related commentary by Cukierman, p. 296.This article is highlighted in the In This Issue feature, p. 275.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic , Mesenchymal Stem Cells/metabolism , Pancreatic Neoplasms/genetics , Animals , Female , Humans , Male , Mice , Pancreatic Neoplasms/pathology
2.
Cancer Discov ; 10(5): 648-656, 2020 05.
Article in English | MEDLINE | ID: mdl-32014869

ABSTRACT

The poor prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) impels an improved understanding of disease biology to facilitate the development of better therapies. PDAC typically features a remarkably dense stromal reaction, featuring and established by a prominent population of cancer-associated fibroblasts (CAF). Genetically engineered mouse models and increasingly sophisticated cell culture techniques have demonstrated important roles for fibroblasts in PDAC progression and therapy response, but these roles are complex, with strong evidence for both tumor-supportive and tumor-suppressive or homeostatic functions. Here, we review the recent literature that has improved our understanding of heterogeneity in fibroblast fate and function in this disease including the existence of distinct fibroblast populations, and highlight important avenues for future study. SIGNIFICANCE: Although the abundant stromal reaction associated with pancreatic cancer has long been appreciated, the functions of the CAF cells that establish this stromal reaction remain unclear. An improved understanding of the transcriptional and functional heterogeneity of pancreatic CAFs, as well as their tumor-supportive versus tumor-suppressive capacity, may facilitate the development of effective therapies for this disease.


Subject(s)
Fibroblasts/pathology , Pancreatic Neoplasms/genetics , Animals , Disease Models, Animal , Genetic Heterogeneity , Humans , Mice , Pancreatic Neoplasms/pathology , Tumor Microenvironment
3.
Cell Death Dis ; 9(6): 632, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29795397

ABSTRACT

MicroRNAs (miRs) contribute to biological robustness by buffering cellular processes from external perturbations. Here we report an unexpected link between DNA damage response and angiogenic signaling that is buffered by a miR. We demonstrate that genotoxic stress-induced miR-494 inhibits the DNA repair machinery by targeting the MRE11a-RAD50-NBN (MRN) complex. Gain- and loss-of-function experiments show that miR-494 exacerbates DNA damage and drives endothelial senescence. Increase of miR-494 affects telomerase activity, activates p21, decreases pRb pathways, and diminishes angiogenic sprouting. Genetic and pharmacological disruption of the MRN pathway decreases VEGF signaling, phenocopies miR-494-induced senescence, and disrupts angiogenic sprouting. Vascular-targeted delivery of miR-494 decreases both growth factor-induced and tumor angiogenesis in mouse models. Our work identifies a putative miR-facilitated mechanism by which endothelial cells can be insulated against VEGF signaling to facilitate the onset of senescence and highlight the potential of targeting DNA repair to disrupt pathological angiogenesis.


Subject(s)
Cellular Senescence/genetics , DNA Damage/genetics , Gene Expression Regulation , MicroRNAs/genetics , Multiprotein Complexes/metabolism , Neovascularization, Physiologic/genetics , Animals , Cellular Senescence/radiation effects , DNA Repair/genetics , DNA Repair/radiation effects , Female , Gene Expression Regulation/radiation effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/radiation effects , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Nude , MicroRNAs/metabolism , Neovascularization, Physiologic/radiation effects , Radiation, Ionizing
SELECTION OF CITATIONS
SEARCH DETAIL
...