Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(18): eaay9709, 2020 May.
Article in English | MEDLINE | ID: mdl-32426474

ABSTRACT

Time-of-flight neutron data reveal spin waves in the ferromagnetic ground state of the kagome staircase material Co3V2O8. While previous work has treated this material as quasi-two-dimensional, we find that an inherently three-dimensional description is needed to describe the spin wave spectrum throughout reciprocal space. Moreover, spin wave branches show gaps that point to an unexpectedly large Dzyaloshinskii-Moriya interaction on the nearest-neighbor bond, with D 1 ≥ J 1/2. A better understanding of the Dzyaloshinskii-Moriya interaction in this material should shed light on the multiferroicity of the related Ni3V2O8. At a higher temperature where Co3V2O8 displays an antiferromagnetic spin density wave structure, there are no well-defined spin wave excitations, with most of the spectral weight observed in broad diffuse scattering centered at the (0, 0.5, 0) antiferromagnetic Bragg peak.

2.
Nature ; 492(7429): 406-10, 2012 Dec 20.
Article in English | MEDLINE | ID: mdl-23257883

ABSTRACT

The experimental realization of quantum spin liquids is a long-sought goal in physics, as they represent new states of matter. Quantum spin liquids cannot be described by the broken symmetries associated with conventional ground states. In fact, the interacting magnetic moments in these systems do not order, but are highly entangled with one another over long ranges. Spin liquids have a prominent role in theories describing high-transition-temperature superconductors, and the topological properties of these states may have applications in quantum information. A key feature of spin liquids is that they support exotic spin excitations carrying fractional quantum numbers. However, detailed measurements of these 'fractionalized excitations' have been lacking. Here we report neutron scattering measurements on single-crystal samples of the spin-1/2 kagome-lattice antiferromagnet ZnCu(3)(OD)(6)Cl(2) (also called herbertsmithite), which provide striking evidence for this characteristic feature of spin liquids. At low temperatures, we find that the spin excitations form a continuum, in contrast to the conventional spin waves expected in ordered antiferromagnets. The observation of such a continuum is noteworthy because, so far, this signature of fractional spin excitations has been observed only in one-dimensional systems. The results also serve as a hallmark of the quantum spin-liquid state in herbertsmithite.

3.
J Phys Condens Matter ; 24(1): 016003, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22155985

ABSTRACT

Single crystal neutron diffraction studies have been performed on the S = 3/2 kagome staircase compound Co(3)V(2)O(8) with a magnetic field applied along the magnetization easy-axis ([Formula: see text]). Previous zero-field measurements (Chen Y et al 2006 Phys. Rev. B 74 014430) reported a rich variety of magnetic phases, with a ferromagnetic ground state as well as incommensurate, transversely polarized spin density wave (SDW) phases (with a propagation vector of [Formula: see text]) interspersed with multiple commensurate lock-in transitions. The magnetic phase diagram with [Formula: see text] adds further complexity. For small applied fields, µ(0)H ≈ 0.05 T, the commensurate lock-in phases are destabilized in favor of the incommensurate SDW ones, while slightly larger applied fields restore the commensurate lock-in phase with δ = 1/2 and yield a new commensurate phase with δ = 2/5. For measurements in an applied field, higher-order scattering is observed that corresponds to the second harmonic.

4.
Inorg Chem ; 48(16): 7782-6, 2009 Aug 17.
Article in English | MEDLINE | ID: mdl-19594117

ABSTRACT

The cadmium copper hydroxide nitrate, CdCu(3)(OH)(6)(NO(3))(2).0.5H(2)O, is furnished from oxygenated suspensions of Cu(2)O in aqueous Cd(NO(3))(2). The compound possesses the kagome structural motif and shows no evidence of magnetic ordering to temperatures as low as 5 K, despite exhibiting a Curie-Weiss temperature of Theta = -114 +/- 27 K, thus giving a spin frustration parameter, f = 22.8.

6.
Phys Rev Lett ; 94(12): 123002, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15903915

ABSTRACT

The collision-induced Zeeman relaxation rate for collisions of CaF X2Sigma(v('')=0) with 3He is measured to be Gamma(Z)=(7.7+5.4/-2.5)x10(-15) cm(3)/s at 2 K. This rate is a direct measurement of the influence of spin-rotation coupling on Zeeman relaxation in the first rotational level of CaF. The relationship of this rate to known molecular constants is consistent with recent theory of cold molecular collisions and outlines the (2)Sigma molecules conducive to magnetic trapping.

SELECTION OF CITATIONS
SEARCH DETAIL
...