Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Struct Biol ; 7: 8, 2007 Mar 07.
Article in English | MEDLINE | ID: mdl-17343730

ABSTRACT

BACKGROUND: The chicken genome contains a BBP-A gene showing similar characteristics to avidin family genes. In a previous study we reported that the BBP-A gene may encode a biotin-binding protein due to the high sequence similarity with chicken avidin, especially at regions encoding residues known to be located at the ligand-binding site of avidin. RESULTS: Here, we expand the repertoire of known macromolecular biotin binders by reporting a novel biotin-binding protein A (BBP-A) from chicken. The BBP-A recombinant protein was expressed using two different expression systems and purified with affinity chromatography, biochemically characterized and two X-ray structures were solved - in complex with D-biotin (BTN) and in complex with D-biotin D-sulfoxide (BSO). The BBP-A protein binds free biotin with high, "streptavidin-like" affinity (Kd ~ 10-13 M), which is about 50 times lower than that of chicken avidin. Surprisingly, the affinity of BBP-A for BSO is even higher than the affinity for BTN. Furthermore, the solved structures of the BBP-A--BTN and BBP-A--BSO complexes, which share the fold with the members of the avidin and lipocalin protein families, are extremely similar to each other. CONCLUSION: BBP-A is an avidin-like protein having a beta-barrel fold and high affinity towards BTN. However, BBP-A differs from the other known members of the avidin protein family in thermal stability and immunological properties. BBP-A also has a unique ligand-binding property, the ability to bind BTN and BSO at comparable affinities. BBP-A may have use as a novel material in, e.g. modern bio(nano)technological applications.


Subject(s)
Carrier Proteins/chemistry , Animals , Avidin/chemistry , Carrier Proteins/metabolism , Chickens , Crystallization , Nanotechnology , Protein Conformation , X-Ray Diffraction
2.
J Mol Biol ; 359(5): 1352-63, 2006 Jun 23.
Article in English | MEDLINE | ID: mdl-16787776

ABSTRACT

Dual chain avidin (dcAvd) is an engineered avidin form, in which two circularly permuted chicken avidin monomers are fused into one polypeptide chain. DcAvd can theoretically form two different pseudotetrameric quaternary assemblies because of symmetry at the monomer-monomer interfaces. Here, our aim was to control the assembly of the quaternary structure of dcAvd. We introduced the mutation I117C into one of the circularly permuted domains of dcAvd and scanned residues along the 1-3 subunit interface of the other domain. Interestingly, V115H resulted in a single, disulfide locked quaternary assembly of dcAvd, whereas I117H could not guide the oligomerisation process even though it stabilised the protein. The modified dcAvd forms were found to retain their characteristic pseudotetrameric state both at high and low pH, and were shown to bind D-biotin at levels comparable to that of wild-type chicken avidin. The crystal structure of dcAvd-biotin complex at 1.95 Angstroms resolution demonstrates the formation of the functional dcAvd pseudotetramer at the atomic level and reveals the molecular basis for its special properties. Altogether, our data facilitate further engineering of the biotechnologically valuable dcAvd scaffold and gives insights into how to guide the quaternary structure assembly of oligomeric proteins.


Subject(s)
Avidin/chemistry , Avidin/metabolism , Protein Engineering , Animals , Avidin/isolation & purification , Biotin/metabolism , Chickens , Chromatography, Gel , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Disulfides/metabolism , Gene Expression , Hydrogen-Ion Concentration , Ligands , Models, Molecular , Mutation/genetics , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...